mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			382 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			382 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
import srsly
 | 
						|
from thinc.api import Config, get_current_ops
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import DEFAULT_CONFIG_PATH, DEFAULT_CONFIG_PRETRAIN_PATH
 | 
						|
from spacy.ml.models.multi_task import create_pretrain_vectors
 | 
						|
from spacy.tokens import Doc, DocBin
 | 
						|
from spacy.training.initialize import init_nlp
 | 
						|
from spacy.training.loop import train
 | 
						|
from spacy.training.pretrain import pretrain
 | 
						|
from spacy.vectors import Vectors
 | 
						|
from spacy.vocab import Vocab
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
pretrain_string_listener = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.width}
 | 
						|
 | 
						|
[pretraining]
 | 
						|
max_epochs = 5
 | 
						|
 | 
						|
[training]
 | 
						|
max_epochs = 5
 | 
						|
"""
 | 
						|
 | 
						|
pretrain_string_internal = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
 | 
						|
[pretraining]
 | 
						|
max_epochs = 5
 | 
						|
 | 
						|
[training]
 | 
						|
max_epochs = 5
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
pretrain_string_vectors = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.width}
 | 
						|
 | 
						|
[pretraining]
 | 
						|
max_epochs = 5
 | 
						|
 | 
						|
[pretraining.objective]
 | 
						|
@architectures = spacy.PretrainVectors.v1
 | 
						|
maxout_pieces = 3
 | 
						|
hidden_size = 300
 | 
						|
loss = cosine
 | 
						|
 | 
						|
[training]
 | 
						|
max_epochs = 5
 | 
						|
"""
 | 
						|
 | 
						|
CHAR_OBJECTIVES = [
 | 
						|
    {},
 | 
						|
    {"@architectures": "spacy.PretrainCharacters.v1"},
 | 
						|
    {
 | 
						|
        "@architectures": "spacy.PretrainCharacters.v1",
 | 
						|
        "maxout_pieces": 5,
 | 
						|
        "hidden_size": 42,
 | 
						|
        "n_characters": 2,
 | 
						|
    },
 | 
						|
]
 | 
						|
 | 
						|
VECTOR_OBJECTIVES = [
 | 
						|
    {
 | 
						|
        "@architectures": "spacy.PretrainVectors.v1",
 | 
						|
        "maxout_pieces": 3,
 | 
						|
        "hidden_size": 300,
 | 
						|
        "loss": "cosine",
 | 
						|
    },
 | 
						|
    {
 | 
						|
        "@architectures": "spacy.PretrainVectors.v1",
 | 
						|
        "maxout_pieces": 2,
 | 
						|
        "hidden_size": 200,
 | 
						|
        "loss": "L2",
 | 
						|
    },
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_pretraining_default():
 | 
						|
    """Test that pretraining defaults to a character objective"""
 | 
						|
    config = Config().from_str(pretrain_string_internal)
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    assert "PretrainCharacters" in filled["pretraining"]["objective"]["@architectures"]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
 | 
						|
@pytest.mark.parametrize("skip_last", (True, False))
 | 
						|
def test_pretraining_tok2vec_characters(objective, skip_last):
 | 
						|
    """Test that pretraining works with the character objective"""
 | 
						|
    config = Config().from_str(pretrain_string_listener)
 | 
						|
    config["pretraining"]["objective"] = objective
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        file_path = write_sample_jsonl(tmp_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        filled = filled.interpolate()
 | 
						|
        assert filled["pretraining"]["component"] == "tok2vec"
 | 
						|
        pretrain(filled, tmp_dir, skip_last=skip_last)
 | 
						|
        assert Path(tmp_dir / "model0.bin").exists()
 | 
						|
        assert Path(tmp_dir / "model4.bin").exists()
 | 
						|
        assert not Path(tmp_dir / "model5.bin").exists()
 | 
						|
        if skip_last:
 | 
						|
            assert not Path(tmp_dir / "model-last.bin").exists()
 | 
						|
        else:
 | 
						|
            assert Path(tmp_dir / "model-last.bin").exists()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
 | 
						|
def test_pretraining_tok2vec_vectors_fail(objective):
 | 
						|
    """Test that pretraining doesn't works with the vectors objective if there are no static vectors"""
 | 
						|
    config = Config().from_str(pretrain_string_listener)
 | 
						|
    config["pretraining"]["objective"] = objective
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        file_path = write_sample_jsonl(tmp_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        filled = filled.interpolate()
 | 
						|
        assert filled["initialize"]["vectors"] is None
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            pretrain(filled, tmp_dir)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
 | 
						|
def test_pretraining_tok2vec_vectors(objective):
 | 
						|
    """Test that pretraining works with the vectors objective and static vectors defined"""
 | 
						|
    config = Config().from_str(pretrain_string_listener)
 | 
						|
    config["pretraining"]["objective"] = objective
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        file_path = write_sample_jsonl(tmp_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        nlp_path = write_vectors_model(tmp_dir)
 | 
						|
        filled["initialize"]["vectors"] = nlp_path
 | 
						|
        filled = filled.interpolate()
 | 
						|
        pretrain(filled, tmp_dir)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("config", [pretrain_string_internal, pretrain_string_listener])
 | 
						|
def test_pretraining_tagger_tok2vec(config):
 | 
						|
    """Test pretraining of the tagger's tok2vec layer (via a listener)"""
 | 
						|
    config = Config().from_str(pretrain_string_listener)
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        file_path = write_sample_jsonl(tmp_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        filled["pretraining"]["component"] = "tagger"
 | 
						|
        filled["pretraining"]["layer"] = "tok2vec"
 | 
						|
        filled = filled.interpolate()
 | 
						|
        pretrain(filled, tmp_dir)
 | 
						|
        assert Path(tmp_dir / "model0.bin").exists()
 | 
						|
        assert Path(tmp_dir / "model4.bin").exists()
 | 
						|
        assert Path(tmp_dir / "model-last.bin").exists()
 | 
						|
        assert not Path(tmp_dir / "model5.bin").exists()
 | 
						|
 | 
						|
 | 
						|
def test_pretraining_tagger():
 | 
						|
    """Test pretraining of the tagger itself will throw an error (not an appropriate tok2vec layer)"""
 | 
						|
    config = Config().from_str(pretrain_string_internal)
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        file_path = write_sample_jsonl(tmp_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        filled["pretraining"]["component"] = "tagger"
 | 
						|
        filled = filled.interpolate()
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            pretrain(filled, tmp_dir)
 | 
						|
 | 
						|
 | 
						|
def test_pretraining_training():
 | 
						|
    """Test that training can use a pretrained Tok2Vec model"""
 | 
						|
    config = Config().from_str(pretrain_string_internal)
 | 
						|
    nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    filled = nlp.config
 | 
						|
    pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = pretrain_config.merge(filled)
 | 
						|
    train_config = util.load_config(DEFAULT_CONFIG_PATH)
 | 
						|
    filled = train_config.merge(filled)
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        pretrain_dir = tmp_dir / "pretrain"
 | 
						|
        pretrain_dir.mkdir()
 | 
						|
        file_path = write_sample_jsonl(pretrain_dir)
 | 
						|
        filled["paths"]["raw_text"] = file_path
 | 
						|
        filled["pretraining"]["component"] = "tagger"
 | 
						|
        filled["pretraining"]["layer"] = "tok2vec"
 | 
						|
        train_dir = tmp_dir / "train"
 | 
						|
        train_dir.mkdir()
 | 
						|
        train_path, dev_path = write_sample_training(train_dir)
 | 
						|
        filled["paths"]["train"] = train_path
 | 
						|
        filled["paths"]["dev"] = dev_path
 | 
						|
        filled = filled.interpolate()
 | 
						|
        P = filled["pretraining"]
 | 
						|
        nlp_base = init_nlp(filled)
 | 
						|
        model_base = (
 | 
						|
            nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
 | 
						|
        )
 | 
						|
        embed_base = None
 | 
						|
        for node in model_base.walk():
 | 
						|
            if node.name == "hashembed":
 | 
						|
                embed_base = node
 | 
						|
        pretrain(filled, pretrain_dir)
 | 
						|
        pretrained_model = Path(pretrain_dir / "model3.bin")
 | 
						|
        assert pretrained_model.exists()
 | 
						|
        filled["initialize"]["init_tok2vec"] = str(pretrained_model)
 | 
						|
        nlp = init_nlp(filled)
 | 
						|
        model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
 | 
						|
        embed = None
 | 
						|
        for node in model.walk():
 | 
						|
            if node.name == "hashembed":
 | 
						|
                embed = node
 | 
						|
        # ensure that the tok2vec weights are actually changed by the pretraining
 | 
						|
        assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
 | 
						|
        train(nlp, train_dir)
 | 
						|
 | 
						|
 | 
						|
def write_sample_jsonl(tmp_dir):
 | 
						|
    data = [
 | 
						|
        {
 | 
						|
            "meta": {"id": "1"},
 | 
						|
            "text": "This is the best TV you'll ever buy!",
 | 
						|
            "cats": {"pos": 1, "neg": 0},
 | 
						|
        },
 | 
						|
        {
 | 
						|
            "meta": {"id": "2"},
 | 
						|
            "text": "I wouldn't buy this again.",
 | 
						|
            "cats": {"pos": 0, "neg": 1},
 | 
						|
        },
 | 
						|
    ]
 | 
						|
    file_path = f"{tmp_dir}/text.jsonl"
 | 
						|
    srsly.write_jsonl(file_path, data)
 | 
						|
    return file_path
 | 
						|
 | 
						|
 | 
						|
def write_sample_training(tmp_dir):
 | 
						|
    words = ["The", "players", "start", "."]
 | 
						|
    tags = ["DT", "NN", "VBZ", "."]
 | 
						|
    doc = Doc(English().vocab, words=words, tags=tags)
 | 
						|
    doc_bin = DocBin()
 | 
						|
    doc_bin.add(doc)
 | 
						|
    train_path = f"{tmp_dir}/train.spacy"
 | 
						|
    dev_path = f"{tmp_dir}/dev.spacy"
 | 
						|
    doc_bin.to_disk(train_path)
 | 
						|
    doc_bin.to_disk(dev_path)
 | 
						|
    return train_path, dev_path
 | 
						|
 | 
						|
 | 
						|
def write_vectors_model(tmp_dir):
 | 
						|
    import numpy
 | 
						|
 | 
						|
    vocab = Vocab()
 | 
						|
    vector_data = {
 | 
						|
        "dog": numpy.random.uniform(-1, 1, (300,)),
 | 
						|
        "cat": numpy.random.uniform(-1, 1, (300,)),
 | 
						|
        "orange": numpy.random.uniform(-1, 1, (300,)),
 | 
						|
    }
 | 
						|
    for word, vector in vector_data.items():
 | 
						|
        vocab.set_vector(word, vector)
 | 
						|
    nlp_path = tmp_dir / "vectors_model"
 | 
						|
    nlp = English(vocab)
 | 
						|
    nlp.to_disk(nlp_path)
 | 
						|
    return str(nlp_path)
 | 
						|
 | 
						|
 | 
						|
def test_pretrain_default_vectors():
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("tok2vec")
 | 
						|
    nlp.initialize()
 | 
						|
 | 
						|
    # default vectors are supported
 | 
						|
    nlp.vocab.vectors = Vectors(shape=(10, 10))
 | 
						|
    create_pretrain_vectors(1, 1, "cosine")(nlp.vocab, nlp.get_pipe("tok2vec").model)
 | 
						|
 | 
						|
    # floret vectors are supported
 | 
						|
    nlp.vocab.vectors = Vectors(
 | 
						|
        data=get_current_ops().xp.zeros((10, 10)), mode="floret", hash_count=1
 | 
						|
    )
 | 
						|
    create_pretrain_vectors(1, 1, "cosine")(nlp.vocab, nlp.get_pipe("tok2vec").model)
 | 
						|
 | 
						|
    # error for no vectors
 | 
						|
    with pytest.raises(ValueError, match="E875"):
 | 
						|
        nlp.vocab.vectors = Vectors()
 | 
						|
        create_pretrain_vectors(1, 1, "cosine")(
 | 
						|
            nlp.vocab, nlp.get_pipe("tok2vec").model
 | 
						|
        )
 |