mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			1165 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1165 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import random
 | 
						|
 | 
						|
import numpy
 | 
						|
import pytest
 | 
						|
import srsly
 | 
						|
from thinc.api import Adam, compounding
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.tokens import Doc, DocBin
 | 
						|
from spacy.training import (
 | 
						|
    Alignment,
 | 
						|
    Corpus,
 | 
						|
    Example,
 | 
						|
    biluo_tags_to_offsets,
 | 
						|
    biluo_tags_to_spans,
 | 
						|
    docs_to_json,
 | 
						|
    iob_to_biluo,
 | 
						|
    offsets_to_biluo_tags,
 | 
						|
)
 | 
						|
from spacy.training.align import get_alignments
 | 
						|
from spacy.training.alignment_array import AlignmentArray
 | 
						|
from spacy.training.converters import json_to_docs
 | 
						|
from spacy.training.loop import train_while_improving
 | 
						|
from spacy.util import (
 | 
						|
    get_words_and_spaces,
 | 
						|
    load_config_from_str,
 | 
						|
    load_model_from_path,
 | 
						|
    minibatch,
 | 
						|
)
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc():
 | 
						|
    nlp = English()  # make sure we get a new vocab every time
 | 
						|
    # fmt: off
 | 
						|
    words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | 
						|
    tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | 
						|
    pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | 
						|
    morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
 | 
						|
              "", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "",
 | 
						|
              "NounType=prop|Number=sing", "PunctType=peri"]
 | 
						|
    # head of '.' is intentionally nonprojective for testing
 | 
						|
    heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
 | 
						|
    deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | 
						|
    lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
 | 
						|
    ents = ["O"] * len(words)
 | 
						|
    ents[0] = "B-PERSON"
 | 
						|
    ents[1] = "I-PERSON"
 | 
						|
    ents[5] = "B-LOC"
 | 
						|
    ents[6] = "I-LOC"
 | 
						|
    ents[8] = "B-GPE"
 | 
						|
    cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | 
						|
    # fmt: on
 | 
						|
    doc = Doc(
 | 
						|
        nlp.vocab,
 | 
						|
        words=words,
 | 
						|
        tags=tags,
 | 
						|
        pos=pos,
 | 
						|
        morphs=morphs,
 | 
						|
        heads=heads,
 | 
						|
        deps=deps,
 | 
						|
        lemmas=lemmas,
 | 
						|
        ents=ents,
 | 
						|
    )
 | 
						|
    doc.cats = cats
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def merged_dict():
 | 
						|
    return {
 | 
						|
        "ids": [1, 2, 3, 4, 5, 6, 7],
 | 
						|
        "words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
 | 
						|
        "spaces": [True, True, True, True, True, True, False],
 | 
						|
        "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
 | 
						|
        "sent_starts": [1, 0, 0, 1, 0, 0, 0],
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    nlp = English()
 | 
						|
    return nlp.vocab
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(999)
 | 
						|
def test_issue999():
 | 
						|
    """Test that adding entities and resuming training works passably OK.
 | 
						|
    There are two issues here:
 | 
						|
    1) We have to re-add labels. This isn't very nice.
 | 
						|
    2) There's no way to set the learning rate for the weight update, so we
 | 
						|
        end up out-of-scale, causing it to learn too fast.
 | 
						|
    """
 | 
						|
    TRAIN_DATA = [
 | 
						|
        ["hey", []],
 | 
						|
        ["howdy", []],
 | 
						|
        ["hey there", []],
 | 
						|
        ["hello", []],
 | 
						|
        ["hi", []],
 | 
						|
        ["i'm looking for a place to eat", []],
 | 
						|
        ["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]],
 | 
						|
        ["show me chinese restaurants", [(8, 15, "CUISINE")]],
 | 
						|
        ["show me chines restaurants", [(8, 14, "CUISINE")]],
 | 
						|
    ]
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("ner")
 | 
						|
    for _, offsets in TRAIN_DATA:
 | 
						|
        for start, end, label in offsets:
 | 
						|
            ner.add_label(label)
 | 
						|
    nlp.initialize()
 | 
						|
    for itn in range(20):
 | 
						|
        random.shuffle(TRAIN_DATA)
 | 
						|
        for raw_text, entity_offsets in TRAIN_DATA:
 | 
						|
            example = Example.from_dict(
 | 
						|
                nlp.make_doc(raw_text), {"entities": entity_offsets}
 | 
						|
            )
 | 
						|
            nlp.update([example])
 | 
						|
 | 
						|
    with make_tempdir() as model_dir:
 | 
						|
        nlp.to_disk(model_dir)
 | 
						|
        nlp2 = load_model_from_path(model_dir)
 | 
						|
 | 
						|
    for raw_text, entity_offsets in TRAIN_DATA:
 | 
						|
        doc = nlp2(raw_text)
 | 
						|
        ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
 | 
						|
        for start, end, label in entity_offsets:
 | 
						|
            if (start, end) in ents:
 | 
						|
                assert ents[(start, end)] == label
 | 
						|
                break
 | 
						|
            else:
 | 
						|
                if entity_offsets:
 | 
						|
                    raise Exception(ents)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(4402)
 | 
						|
def test_issue4402():
 | 
						|
    json_data = {
 | 
						|
        "id": 0,
 | 
						|
        "paragraphs": [
 | 
						|
            {
 | 
						|
                "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.",
 | 
						|
                "sentences": [
 | 
						|
                    {
 | 
						|
                        "tokens": [
 | 
						|
                            {"id": 0, "orth": "How", "ner": "O"},
 | 
						|
                            {"id": 1, "orth": "should", "ner": "O"},
 | 
						|
                            {"id": 2, "orth": "I", "ner": "O"},
 | 
						|
                            {"id": 3, "orth": "cook", "ner": "O"},
 | 
						|
                            {"id": 4, "orth": "bacon", "ner": "O"},
 | 
						|
                            {"id": 5, "orth": "in", "ner": "O"},
 | 
						|
                            {"id": 6, "orth": "an", "ner": "O"},
 | 
						|
                            {"id": 7, "orth": "oven", "ner": "O"},
 | 
						|
                            {"id": 8, "orth": "?", "ner": "O"},
 | 
						|
                        ],
 | 
						|
                        "brackets": [],
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "tokens": [
 | 
						|
                            {"id": 9, "orth": "\n", "ner": "O"},
 | 
						|
                            {"id": 10, "orth": "I", "ner": "O"},
 | 
						|
                            {"id": 11, "orth": "'ve", "ner": "O"},
 | 
						|
                            {"id": 12, "orth": "heard", "ner": "O"},
 | 
						|
                            {"id": 13, "orth": "of", "ner": "O"},
 | 
						|
                            {"id": 14, "orth": "people", "ner": "O"},
 | 
						|
                            {"id": 15, "orth": "cooking", "ner": "O"},
 | 
						|
                            {"id": 16, "orth": "bacon", "ner": "O"},
 | 
						|
                            {"id": 17, "orth": "in", "ner": "O"},
 | 
						|
                            {"id": 18, "orth": "an", "ner": "O"},
 | 
						|
                            {"id": 19, "orth": "oven", "ner": "O"},
 | 
						|
                            {"id": 20, "orth": ".", "ner": "O"},
 | 
						|
                        ],
 | 
						|
                        "brackets": [],
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
                "cats": [
 | 
						|
                    {"label": "baking", "value": 1.0},
 | 
						|
                    {"label": "not_baking", "value": 0.0},
 | 
						|
                ],
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "raw": "What is the difference between white and brown eggs?\n",
 | 
						|
                "sentences": [
 | 
						|
                    {
 | 
						|
                        "tokens": [
 | 
						|
                            {"id": 0, "orth": "What", "ner": "O"},
 | 
						|
                            {"id": 1, "orth": "is", "ner": "O"},
 | 
						|
                            {"id": 2, "orth": "the", "ner": "O"},
 | 
						|
                            {"id": 3, "orth": "difference", "ner": "O"},
 | 
						|
                            {"id": 4, "orth": "between", "ner": "O"},
 | 
						|
                            {"id": 5, "orth": "white", "ner": "O"},
 | 
						|
                            {"id": 6, "orth": "and", "ner": "O"},
 | 
						|
                            {"id": 7, "orth": "brown", "ner": "O"},
 | 
						|
                            {"id": 8, "orth": "eggs", "ner": "O"},
 | 
						|
                            {"id": 9, "orth": "?", "ner": "O"},
 | 
						|
                        ],
 | 
						|
                        "brackets": [],
 | 
						|
                    },
 | 
						|
                    {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []},
 | 
						|
                ],
 | 
						|
                "cats": [
 | 
						|
                    {"label": "baking", "value": 0.0},
 | 
						|
                    {"label": "not_baking", "value": 1.0},
 | 
						|
                ],
 | 
						|
            },
 | 
						|
        ],
 | 
						|
    }
 | 
						|
    nlp = English()
 | 
						|
    attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        output_file = tmpdir / "test4402.spacy"
 | 
						|
        docs = json_to_docs([json_data])
 | 
						|
        data = DocBin(docs=docs, attrs=attrs).to_bytes()
 | 
						|
        with output_file.open("wb") as file_:
 | 
						|
            file_.write(data)
 | 
						|
        reader = Corpus(output_file)
 | 
						|
        train_data = list(reader(nlp))
 | 
						|
        assert len(train_data) == 2
 | 
						|
 | 
						|
        split_train_data = []
 | 
						|
        for eg in train_data:
 | 
						|
            split_train_data.extend(eg.split_sents())
 | 
						|
        assert len(split_train_data) == 4
 | 
						|
 | 
						|
 | 
						|
CONFIG_7029 = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.Tok2Vec.v1"
 | 
						|
 | 
						|
[components.tok2vec.model.embed]
 | 
						|
@architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
 | 
						|
rows = [5000,2500,2500,2500]
 | 
						|
include_static_vectors = false
 | 
						|
 | 
						|
[components.tok2vec.model.encode]
 | 
						|
@architectures = "spacy.MaxoutWindowEncoder.v1"
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
nO = null
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
upstream = "*"
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(7029)
 | 
						|
def test_issue7029():
 | 
						|
    """Test that an empty document doesn't mess up an entire batch."""
 | 
						|
    TRAIN_DATA = [
 | 
						|
        ("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
 | 
						|
        ("Eat blue ham", {"tags": ["V", "J", "N"]}),
 | 
						|
    ]
 | 
						|
    nlp = English.from_config(load_config_from_str(CONFIG_7029))
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
 | 
						|
    docs1 = list(nlp.pipe(texts, batch_size=1))
 | 
						|
    docs2 = list(nlp.pipe(texts, batch_size=4))
 | 
						|
    assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_U(en_vocab):
 | 
						|
    words = ["I", "flew", "to", "London", "."]
 | 
						|
    spaces = [True, True, True, False, True]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    entities = [(len("I flew to "), len("I flew to London"), "LOC")]
 | 
						|
    tags = offsets_to_biluo_tags(doc, entities)
 | 
						|
    assert tags == ["O", "O", "O", "U-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_BL(en_vocab):
 | 
						|
    words = ["I", "flew", "to", "San", "Francisco", "."]
 | 
						|
    spaces = [True, True, True, True, False, True]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
 | 
						|
    tags = offsets_to_biluo_tags(doc, entities)
 | 
						|
    assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_BIL(en_vocab):
 | 
						|
    words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    spaces = [True, True, True, True, True, False, True]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | 
						|
    tags = offsets_to_biluo_tags(doc, entities)
 | 
						|
    assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_overlap(en_vocab):
 | 
						|
    words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    spaces = [True, True, True, True, True, False, True]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    entities = [
 | 
						|
        (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
 | 
						|
        (len("I flew to "), len("I flew to San Francisco"), "LOC"),
 | 
						|
    ]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        offsets_to_biluo_tags(doc, entities)
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_misalign(en_vocab):
 | 
						|
    words = ["I", "flew", "to", "San", "Francisco", "Valley."]
 | 
						|
    spaces = [True, True, True, True, True, False]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        tags = offsets_to_biluo_tags(doc, entities)
 | 
						|
    assert tags == ["O", "O", "O", "-", "-", "-"]
 | 
						|
 | 
						|
 | 
						|
def test_example_constructor(en_vocab):
 | 
						|
    words = ["I", "like", "stuff"]
 | 
						|
    tags = ["NOUN", "VERB", "NOUN"]
 | 
						|
    tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | 
						|
    predicted = Doc(en_vocab, words=words)
 | 
						|
    reference = Doc(en_vocab, words=words)
 | 
						|
    reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | 
						|
    example = Example(predicted, reference)
 | 
						|
    tags = example.get_aligned("TAG", as_string=True)
 | 
						|
    assert tags == ["NOUN", "VERB", "NOUN"]
 | 
						|
 | 
						|
 | 
						|
def test_example_from_dict_tags(en_vocab):
 | 
						|
    words = ["I", "like", "stuff"]
 | 
						|
    tags = ["NOUN", "VERB", "NOUN"]
 | 
						|
    predicted = Doc(en_vocab, words=words)
 | 
						|
    example = Example.from_dict(predicted, {"TAGS": tags})
 | 
						|
    tags = example.get_aligned("TAG", as_string=True)
 | 
						|
    assert tags == ["NOUN", "VERB", "NOUN"]
 | 
						|
 | 
						|
 | 
						|
def test_example_from_dict_no_ner(en_vocab):
 | 
						|
    words = ["a", "b", "c", "d"]
 | 
						|
    spaces = [True, True, False, True]
 | 
						|
    predicted = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    example = Example.from_dict(predicted, {"words": words})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == [None, None, None, None]
 | 
						|
 | 
						|
 | 
						|
def test_example_from_dict_some_ner(en_vocab):
 | 
						|
    words = ["a", "b", "c", "d"]
 | 
						|
    spaces = [True, True, False, True]
 | 
						|
    predicted = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    example = Example.from_dict(
 | 
						|
        predicted, {"words": words, "entities": ["U-LOC", None, None, None]}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["U-LOC", None, None, None]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.filterwarnings("ignore::UserWarning")
 | 
						|
def test_json_to_docs_no_ner(en_vocab):
 | 
						|
    data = [
 | 
						|
        {
 | 
						|
            "id": 1,
 | 
						|
            "paragraphs": [
 | 
						|
                {
 | 
						|
                    "sentences": [
 | 
						|
                        {
 | 
						|
                            "tokens": [
 | 
						|
                                {"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."},
 | 
						|
                                {
 | 
						|
                                    "dep": "nsubj",
 | 
						|
                                    "head": 1,
 | 
						|
                                    "tag": "NNP",
 | 
						|
                                    "orth": "Haag",
 | 
						|
                                },
 | 
						|
                                {
 | 
						|
                                    "dep": "ROOT",
 | 
						|
                                    "head": 0,
 | 
						|
                                    "tag": "VBZ",
 | 
						|
                                    "orth": "plays",
 | 
						|
                                },
 | 
						|
                                {
 | 
						|
                                    "dep": "dobj",
 | 
						|
                                    "head": -1,
 | 
						|
                                    "tag": "NNP",
 | 
						|
                                    "orth": "Elianti",
 | 
						|
                                },
 | 
						|
                                {"dep": "punct", "head": -2, "tag": ".", "orth": "."},
 | 
						|
                            ]
 | 
						|
                        }
 | 
						|
                    ]
 | 
						|
                }
 | 
						|
            ],
 | 
						|
        }
 | 
						|
    ]
 | 
						|
    docs = list(json_to_docs(data))
 | 
						|
    assert len(docs) == 1
 | 
						|
    for doc in docs:
 | 
						|
        assert not doc.has_annotation("ENT_IOB")
 | 
						|
    for token in doc:
 | 
						|
        assert token.ent_iob == 0
 | 
						|
    eg = Example(
 | 
						|
        Doc(
 | 
						|
            doc.vocab,
 | 
						|
            words=[w.text for w in doc],
 | 
						|
            spaces=[bool(w.whitespace_) for w in doc],
 | 
						|
        ),
 | 
						|
        doc,
 | 
						|
    )
 | 
						|
    ner_tags = eg.get_aligned_ner()
 | 
						|
    assert ner_tags == [None, None, None, None, None]
 | 
						|
 | 
						|
 | 
						|
def test_split_sentences(en_vocab):
 | 
						|
    # fmt: off
 | 
						|
    words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
 | 
						|
    gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
 | 
						|
    sent_starts = [True, False, False, False, False, False, True, False, False, False]
 | 
						|
    # fmt: on
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | 
						|
    assert example.text == "I flew to San Francisco Valley had loads of fun "
 | 
						|
    split_examples = example.split_sents()
 | 
						|
    assert len(split_examples) == 2
 | 
						|
    assert split_examples[0].text == "I flew to San Francisco Valley "
 | 
						|
    assert split_examples[1].text == "had loads of fun "
 | 
						|
    # fmt: off
 | 
						|
    words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
 | 
						|
    gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
 | 
						|
    sent_starts = [True, False, False, False, False, True, False, False]
 | 
						|
    # fmt: on
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | 
						|
    assert example.text == "I flew to San Francisco Valley had loads of fun "
 | 
						|
    split_examples = example.split_sents()
 | 
						|
    assert len(split_examples) == 2
 | 
						|
    assert split_examples[0].text == "I flew to San Francisco Valley "
 | 
						|
    assert split_examples[1].text == "had loads of fun "
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
 | 
						|
    words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | 
						|
    spaces = [True, True, True, False, False]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    prefix = "Mr and Mrs Smith flew to "
 | 
						|
    entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | 
						|
    gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
 | 
						|
 | 
						|
    entities = [
 | 
						|
        (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    # fmt: off
 | 
						|
    gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    # fmt: on
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
 | 
						|
 | 
						|
    entities = [
 | 
						|
        (len("Mr and "), len("Mr and Mrs"), "PERSON"),  # "Mrs" is a Person
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    # fmt: off
 | 
						|
    gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    # fmt: on
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", None, "O", "U-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
 | 
						|
    words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    spaces = [True, True, True, True, True, True, True, False, False]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    prefix = "Mr and Mrs Smith flew to "
 | 
						|
    entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | 
						|
    gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
    entities = [
 | 
						|
        (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | 
						|
    assert ner_tags == expected
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
 | 
						|
    words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
 | 
						|
    spaces = [True, True, True, True, True, False, False]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    prefix = "Mr and Mrs Smith flew to "
 | 
						|
    entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | 
						|
    gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
    entities = [
 | 
						|
        (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | 
						|
    example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
 | 
						|
    # additional whitespace tokens in GoldParse words
 | 
						|
    words, spaces = get_words_and_spaces(
 | 
						|
        ["I", "flew", "to", "San Francisco", "Valley", "."],
 | 
						|
        "I flew  to San Francisco Valley.",
 | 
						|
    )
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    prefix = "I flew  to "
 | 
						|
    entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | 
						|
    gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
 | 
						|
    gold_spaces = [True, True, False, True, False, False]
 | 
						|
    example = Example.from_dict(
 | 
						|
        doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_gold_biluo_4791(en_vocab, en_tokenizer):
 | 
						|
    doc = en_tokenizer("I'll return the A54 amount")
 | 
						|
    gold_words = ["I", "'ll", "return", "the", "A", "54", "amount"]
 | 
						|
    gold_spaces = [False, True, True, True, False, True, False]
 | 
						|
    entities = [(16, 19, "MONEY")]
 | 
						|
    example = Example.from_dict(
 | 
						|
        doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"]
 | 
						|
 | 
						|
    doc = en_tokenizer("I'll return the $54 amount")
 | 
						|
    gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"]
 | 
						|
    gold_spaces = [False, True, True, True, False, True, False]
 | 
						|
    entities = [(16, 19, "MONEY")]
 | 
						|
    example = Example.from_dict(
 | 
						|
        doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"]
 | 
						|
 | 
						|
 | 
						|
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
 | 
						|
    text = "I flew to Silicon Valley via London."
 | 
						|
    biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | 
						|
    offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    biluo_tags_converted = offsets_to_biluo_tags(doc, offsets)
 | 
						|
    assert biluo_tags_converted == biluo_tags
 | 
						|
    offsets_converted = biluo_tags_to_offsets(doc, biluo_tags)
 | 
						|
    offsets_converted = [ent for ent in offsets if ent[2]]
 | 
						|
    assert offsets_converted == offsets
 | 
						|
 | 
						|
 | 
						|
def test_biluo_spans(en_tokenizer):
 | 
						|
    doc = en_tokenizer("I flew to Silicon Valley via London.")
 | 
						|
    biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | 
						|
    spans = biluo_tags_to_spans(doc, biluo_tags)
 | 
						|
    spans = [span for span in spans if span.label_]
 | 
						|
    assert len(spans) == 2
 | 
						|
    assert spans[0].text == "Silicon Valley"
 | 
						|
    assert spans[0].label_ == "LOC"
 | 
						|
    assert spans[1].text == "London"
 | 
						|
    assert spans[1].label_ == "GPE"
 | 
						|
 | 
						|
 | 
						|
def test_aligned_spans_y2x(en_vocab, en_tokenizer):
 | 
						|
    words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
 | 
						|
    spaces = [True, True, True, False, False]
 | 
						|
    doc = Doc(en_vocab, words=words, spaces=spaces)
 | 
						|
    prefix = "Mr and Mrs Smith flew to "
 | 
						|
    entities = [
 | 
						|
        (0, len("Mr and Mrs Smith"), "PERSON"),
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    # fmt: off
 | 
						|
    tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | 
						|
    # fmt: on
 | 
						|
    example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | 
						|
    ents_ref = example.reference.ents
 | 
						|
    assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
 | 
						|
    ents_y2x = example.get_aligned_spans_y2x(ents_ref)
 | 
						|
    assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
 | 
						|
 | 
						|
 | 
						|
def test_aligned_spans_x2y(en_vocab, en_tokenizer):
 | 
						|
    text = "Mr and Mrs Smith flew to San Francisco Valley"
 | 
						|
    nlp = English()
 | 
						|
    patterns = [
 | 
						|
        {"label": "PERSON", "pattern": "Mr and Mrs Smith"},
 | 
						|
        {"label": "LOC", "pattern": "San Francisco Valley"},
 | 
						|
    ]
 | 
						|
    ruler = nlp.add_pipe("entity_ruler")
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
    doc = nlp(text)
 | 
						|
    assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
 | 
						|
    prefix = "Mr and Mrs Smith flew to "
 | 
						|
    entities = [
 | 
						|
        (0, len("Mr and Mrs Smith"), "PERSON"),
 | 
						|
        (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | 
						|
    ]
 | 
						|
    tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
 | 
						|
    example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | 
						|
    assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
 | 
						|
    # Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
 | 
						|
    ents_pred = example.predicted.ents
 | 
						|
    assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
 | 
						|
    ents_x2y = example.get_aligned_spans_x2y(ents_pred)
 | 
						|
    assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
 | 
						|
 | 
						|
 | 
						|
def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
 | 
						|
    text = "I flew to San Francisco Valley"
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(text)
 | 
						|
    # the reference doc has overlapping spans
 | 
						|
    gold_doc = nlp.make_doc(text)
 | 
						|
    spans = []
 | 
						|
    prefix = "I flew to "
 | 
						|
    spans.append(
 | 
						|
        gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY")
 | 
						|
    )
 | 
						|
    spans.append(
 | 
						|
        gold_doc.char_span(
 | 
						|
            len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"
 | 
						|
        )
 | 
						|
    )
 | 
						|
    spans_key = "overlap_ents"
 | 
						|
    gold_doc.spans[spans_key] = spans
 | 
						|
    example = Example(doc, gold_doc)
 | 
						|
    spans_gold = example.reference.spans[spans_key]
 | 
						|
    assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)]
 | 
						|
 | 
						|
    # Ensure that 'get_aligned_spans_y2x' has the aligned entities correct
 | 
						|
    spans_y2x_no_overlap = example.get_aligned_spans_y2x(
 | 
						|
        spans_gold, allow_overlap=False
 | 
						|
    )
 | 
						|
    assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)]
 | 
						|
    spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True)
 | 
						|
    assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)]
 | 
						|
 | 
						|
 | 
						|
def test_gold_ner_missing_tags(en_tokenizer):
 | 
						|
    doc = en_tokenizer("I flew to Silicon Valley via London.")
 | 
						|
    biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | 
						|
    example = Example.from_dict(doc, {"entities": biluo_tags})
 | 
						|
    assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
 | 
						|
 | 
						|
 | 
						|
def test_projectivize(en_tokenizer):
 | 
						|
    doc = en_tokenizer("He pretty quickly walks away")
 | 
						|
    heads = [3, 2, 3, 3, 2]
 | 
						|
    deps = ["dep"] * len(heads)
 | 
						|
    example = Example.from_dict(doc, {"heads": heads, "deps": deps})
 | 
						|
    proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | 
						|
    nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
 | 
						|
    assert proj_heads == [3, 2, 3, 3, 3]
 | 
						|
    assert nonproj_heads == [3, 2, 3, 3, 2]
 | 
						|
 | 
						|
    # Test single token documents
 | 
						|
    doc = en_tokenizer("Conrail")
 | 
						|
    heads = [0]
 | 
						|
    deps = ["dep"]
 | 
						|
    example = Example.from_dict(doc, {"heads": heads, "deps": deps})
 | 
						|
    proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | 
						|
    assert proj_heads == heads
 | 
						|
    assert proj_labels == deps
 | 
						|
 | 
						|
    # Test documents with no alignments
 | 
						|
    doc_a = Doc(
 | 
						|
        doc.vocab, words=["Double-Jointed"], spaces=[False], deps=["ROOT"], heads=[0]
 | 
						|
    )
 | 
						|
    doc_b = Doc(
 | 
						|
        doc.vocab,
 | 
						|
        words=["Double", "-", "Jointed"],
 | 
						|
        spaces=[True, True, True],
 | 
						|
        deps=["amod", "punct", "ROOT"],
 | 
						|
        heads=[2, 2, 2],
 | 
						|
    )
 | 
						|
    example = Example(doc_a, doc_b)
 | 
						|
    proj_heads, proj_deps = example.get_aligned_parse(projectivize=True)
 | 
						|
    assert proj_heads == [None]
 | 
						|
    assert proj_deps == [None]
 | 
						|
 | 
						|
 | 
						|
def test_iob_to_biluo():
 | 
						|
    good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
 | 
						|
    good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
 | 
						|
    bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
 | 
						|
    converted_biluo = iob_to_biluo(good_iob)
 | 
						|
    assert good_biluo == converted_biluo
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        iob_to_biluo(bad_iob)
 | 
						|
 | 
						|
 | 
						|
def test_roundtrip_docs_to_docbin(doc):
 | 
						|
    text = doc.text
 | 
						|
    idx = [t.idx for t in doc]
 | 
						|
    tags = [t.tag_ for t in doc]
 | 
						|
    pos = [t.pos_ for t in doc]
 | 
						|
    morphs = [str(t.morph) for t in doc]
 | 
						|
    lemmas = [t.lemma_ for t in doc]
 | 
						|
    deps = [t.dep_ for t in doc]
 | 
						|
    heads = [t.head.i for t in doc]
 | 
						|
    cats = doc.cats
 | 
						|
    ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
 | 
						|
    # roundtrip to DocBin
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        # use a separate vocab to test that all labels are added
 | 
						|
        reloaded_nlp = English()
 | 
						|
        json_file = tmpdir / "roundtrip.json"
 | 
						|
        srsly.write_json(json_file, [docs_to_json(doc)])
 | 
						|
        output_file = tmpdir / "roundtrip.spacy"
 | 
						|
        DocBin(docs=[doc]).to_disk(output_file)
 | 
						|
        reader = Corpus(output_file)
 | 
						|
        reloaded_examples = list(reader(reloaded_nlp))
 | 
						|
    assert len(doc) == sum(len(eg) for eg in reloaded_examples)
 | 
						|
    reloaded_example = reloaded_examples[0]
 | 
						|
    assert text == reloaded_example.reference.text
 | 
						|
    assert idx == [t.idx for t in reloaded_example.reference]
 | 
						|
    assert tags == [t.tag_ for t in reloaded_example.reference]
 | 
						|
    assert pos == [t.pos_ for t in reloaded_example.reference]
 | 
						|
    assert morphs == [str(t.morph) for t in reloaded_example.reference]
 | 
						|
    assert lemmas == [t.lemma_ for t in reloaded_example.reference]
 | 
						|
    assert deps == [t.dep_ for t in reloaded_example.reference]
 | 
						|
    assert heads == [t.head.i for t in reloaded_example.reference]
 | 
						|
    assert ents == [
 | 
						|
        (e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents
 | 
						|
    ]
 | 
						|
    assert "TRAVEL" in reloaded_example.reference.cats
 | 
						|
    assert "BAKING" in reloaded_example.reference.cats
 | 
						|
    assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"]
 | 
						|
    assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
 | 
						|
 | 
						|
 | 
						|
def test_docbin_user_data_serialized(doc):
 | 
						|
    doc.user_data["check"] = True
 | 
						|
    nlp = English()
 | 
						|
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        output_file = tmpdir / "userdata.spacy"
 | 
						|
        DocBin(docs=[doc], store_user_data=True).to_disk(output_file)
 | 
						|
        reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
 | 
						|
        reloaded_doc = list(reloaded_docs)[0]
 | 
						|
 | 
						|
    assert reloaded_doc.user_data["check"] == True
 | 
						|
 | 
						|
 | 
						|
def test_docbin_user_data_not_serialized(doc):
 | 
						|
    # this isn't serializable, but that shouldn't cause an error
 | 
						|
    doc.user_data["check"] = set()
 | 
						|
    nlp = English()
 | 
						|
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        output_file = tmpdir / "userdata.spacy"
 | 
						|
        DocBin(docs=[doc], store_user_data=False).to_disk(output_file)
 | 
						|
        reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
 | 
						|
        reloaded_doc = list(reloaded_docs)[0]
 | 
						|
 | 
						|
    assert "check" not in reloaded_doc.user_data
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "tokens_a,tokens_b,expected",
 | 
						|
    [
 | 
						|
        (["a", "b", "c"], ["ab", "c"], ([[0], [0], [1]], [[0, 1], [2]])),
 | 
						|
        (
 | 
						|
            ["a", "b", '"', "c"],
 | 
						|
            ['ab"', "c"],
 | 
						|
            ([[0], [0], [0], [1]], [[0, 1, 2], [3]]),
 | 
						|
        ),
 | 
						|
        (["a", "bc"], ["ab", "c"], ([[0], [0, 1]], [[0, 1], [1]])),
 | 
						|
        (
 | 
						|
            ["ab", "c", "d"],
 | 
						|
            ["a", "b", "cd"],
 | 
						|
            ([[0, 1], [2], [2]], [[0], [0], [1, 2]]),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            ["a", "b", "cd"],
 | 
						|
            ["a", "b", "c", "d"],
 | 
						|
            ([[0], [1], [2, 3]], [[0], [1], [2], [2]]),
 | 
						|
        ),
 | 
						|
        ([" ", "a"], ["a"], ([[], [0]], [[1]])),
 | 
						|
        (
 | 
						|
            ["a", "''", "'", ","],
 | 
						|
            ["a'", "''", ","],
 | 
						|
            ([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]),
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_align(tokens_a, tokens_b, expected):  # noqa
 | 
						|
    a2b, b2a = get_alignments(tokens_a, tokens_b)
 | 
						|
    assert (a2b, b2a) == expected  # noqa
 | 
						|
    # check symmetry
 | 
						|
    a2b, b2a = get_alignments(tokens_b, tokens_a)  # noqa
 | 
						|
    assert (b2a, a2b) == expected  # noqa
 | 
						|
 | 
						|
 | 
						|
def test_goldparse_startswith_space(en_tokenizer):
 | 
						|
    text = " a"
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    gold_words = ["a"]
 | 
						|
    entities = ["U-DATE"]
 | 
						|
    deps = ["ROOT"]
 | 
						|
    heads = [0]
 | 
						|
    example = Example.from_dict(
 | 
						|
        doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["O", "U-DATE"]
 | 
						|
    assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]
 | 
						|
 | 
						|
 | 
						|
def test_goldparse_endswith_space(en_tokenizer):
 | 
						|
    text = "a\n"
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    gold_words = ["a"]
 | 
						|
    entities = ["U-DATE"]
 | 
						|
    deps = ["ROOT"]
 | 
						|
    heads = [0]
 | 
						|
    example = Example.from_dict(
 | 
						|
        doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
 | 
						|
    )
 | 
						|
    ner_tags = example.get_aligned_ner()
 | 
						|
    assert ner_tags == ["U-DATE", "O"]
 | 
						|
    assert example.get_aligned("DEP", as_string=True) == ["ROOT", None]
 | 
						|
 | 
						|
 | 
						|
def test_gold_constructor():
 | 
						|
    """Test that the Example constructor works fine"""
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp("This is a sentence")
 | 
						|
    example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}})
 | 
						|
    assert example.get_aligned("ORTH", as_string=True) == [
 | 
						|
        "This",
 | 
						|
        "is",
 | 
						|
        "a",
 | 
						|
        "sentence",
 | 
						|
    ]
 | 
						|
    assert example.reference.cats["cat1"]
 | 
						|
    assert not example.reference.cats["cat2"]
 | 
						|
 | 
						|
 | 
						|
def test_tuple_format_implicit():
 | 
						|
    """Test tuple format"""
 | 
						|
 | 
						|
    train_data = [
 | 
						|
        ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
 | 
						|
        (
 | 
						|
            "Spotify steps up Asia expansion",
 | 
						|
            {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | 
						|
        ),
 | 
						|
        ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | 
						|
    ]
 | 
						|
 | 
						|
    _train_tuples(train_data)
 | 
						|
 | 
						|
 | 
						|
def test_tuple_format_implicit_invalid():
 | 
						|
    """Test that an error is thrown for an implicit invalid field"""
 | 
						|
    train_data = [
 | 
						|
        ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
 | 
						|
        (
 | 
						|
            "Spotify steps up Asia expansion",
 | 
						|
            {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | 
						|
        ),
 | 
						|
        ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | 
						|
    ]
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        _train_tuples(train_data)
 | 
						|
 | 
						|
 | 
						|
def _train_tuples(train_data):
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("ner")
 | 
						|
    ner.add_label("ORG")
 | 
						|
    ner.add_label("LOC")
 | 
						|
    train_examples = []
 | 
						|
    for t in train_data:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    optimizer = nlp.initialize()
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
 | 
						|
        for batch in batches:
 | 
						|
            nlp.update(batch, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
 | 
						|
def test_split_sents(merged_dict):
 | 
						|
    nlp = English()
 | 
						|
    example = Example.from_dict(
 | 
						|
        Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]),
 | 
						|
        merged_dict,
 | 
						|
    )
 | 
						|
    assert example.text == "Hi there everyone It is just me"
 | 
						|
    split_examples = example.split_sents()
 | 
						|
    assert len(split_examples) == 2
 | 
						|
    assert split_examples[0].text == "Hi there everyone "
 | 
						|
    assert split_examples[1].text == "It is just me"
 | 
						|
    token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
 | 
						|
    assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
 | 
						|
    assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
 | 
						|
    assert token_annotation_1["SENT_START"] == [1, 0, 0]
 | 
						|
    token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
 | 
						|
    assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
 | 
						|
    assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
 | 
						|
    assert token_annotation_2["SENT_START"] == [1, 0, 0, 0]
 | 
						|
 | 
						|
 | 
						|
def test_alignment():
 | 
						|
    other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | 
						|
    assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
 | 
						|
def test_alignment_array():
 | 
						|
    a = AlignmentArray([[0, 1, 2], [3], [], [4, 5, 6, 7], [8, 9]])
 | 
						|
    assert list(a.data) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						|
    assert list(a.lengths) == [3, 1, 0, 4, 2]
 | 
						|
    assert list(a[3]) == [4, 5, 6, 7]
 | 
						|
    assert list(a[2]) == []
 | 
						|
    assert list(a[-2]) == [4, 5, 6, 7]
 | 
						|
    assert list(a[1:4]) == [3, 4, 5, 6, 7]
 | 
						|
    assert list(a[1:]) == [3, 4, 5, 6, 7, 8, 9]
 | 
						|
    assert list(a[:3]) == [0, 1, 2, 3]
 | 
						|
    assert list(a[:]) == list(a.data)
 | 
						|
    assert list(a[0:0]) == []
 | 
						|
    assert list(a[3:3]) == []
 | 
						|
    assert list(a[-1:-1]) == []
 | 
						|
    with pytest.raises(ValueError, match=r"only supports slicing with a step of 1"):
 | 
						|
        a[:4:-1]
 | 
						|
    with pytest.raises(
 | 
						|
        ValueError, match=r"only supports indexing using an int or a slice"
 | 
						|
    ):
 | 
						|
        a[[0, 1, 3]]
 | 
						|
 | 
						|
    a = AlignmentArray([[], [1, 2, 3], [4, 5]])
 | 
						|
    assert list(a[0]) == []
 | 
						|
    assert list(a[0:1]) == []
 | 
						|
    assert list(a[2]) == [4, 5]
 | 
						|
    assert list(a[0:2]) == [1, 2, 3]
 | 
						|
 | 
						|
    a = AlignmentArray([[1, 2, 3], [4, 5], []])
 | 
						|
    assert list(a[-1]) == []
 | 
						|
    assert list(a[-2:]) == [4, 5]
 | 
						|
 | 
						|
 | 
						|
def test_alignment_case_insensitive():
 | 
						|
    other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | 
						|
    assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
 | 
						|
def test_alignment_complex():
 | 
						|
    other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | 
						|
 | 
						|
 | 
						|
def test_alignment_complex_example(en_vocab):
 | 
						|
    other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    predicted = Doc(
 | 
						|
        en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False]
 | 
						|
    )
 | 
						|
    reference = Doc(
 | 
						|
        en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False]
 | 
						|
    )
 | 
						|
    assert predicted.text == "i listened to obama's podcasts."
 | 
						|
    assert reference.text == "i listened to obama's podcasts."
 | 
						|
    example = Example(predicted, reference)
 | 
						|
    align = example.alignment
 | 
						|
    assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | 
						|
 | 
						|
 | 
						|
def test_alignment_different_texts():
 | 
						|
    other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
 | 
						|
 | 
						|
def test_alignment_spaces(en_vocab):
 | 
						|
    # single leading whitespace
 | 
						|
    other_tokens = [" ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [1, 1, 1, 2, 3, 4, 5, 6]
 | 
						|
 | 
						|
    # multiple leading whitespace tokens
 | 
						|
    other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [2, 2, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
    # both with leading whitespace, not identical
 | 
						|
    other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [1, 0, 3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 5, 5, 6, 6]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 2, 2, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
    # same leading whitespace, different tokenization
 | 
						|
    other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
 | 
						|
    spacy_tokens = ["  ", "i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [1, 1, 3, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 0, 1, 2, 3, 4, 5, 5, 6, 6]
 | 
						|
    assert list(align.y2x.lengths) == [2, 1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 1, 2, 2, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
    # only one with trailing whitespace
 | 
						|
    other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " "]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 0]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
 | 
						|
 | 
						|
    # different trailing whitespace
 | 
						|
    other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 0]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 1]
 | 
						|
    assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6]
 | 
						|
 | 
						|
    # same trailing whitespace, different tokenization
 | 
						|
    other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
 | 
						|
    spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", "  "]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 1]
 | 
						|
    assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6, 6]
 | 
						|
    assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 2]
 | 
						|
    assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]
 | 
						|
 | 
						|
    # differing whitespace is allowed
 | 
						|
    other_tokens = ["a", " \n ", "b", "c"]
 | 
						|
    spacy_tokens = ["a", "b", " ", "c"]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
    assert list(align.x2y.data) == [0, 1, 3]
 | 
						|
    assert list(align.y2x.data) == [0, 2, 3]
 | 
						|
 | 
						|
    # other differences in whitespace are allowed
 | 
						|
    other_tokens = [" ", "a"]
 | 
						|
    spacy_tokens = ["  ", "a", " "]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
 | 
						|
    other_tokens = ["a", " "]
 | 
						|
    spacy_tokens = ["a", "  "]
 | 
						|
    align = Alignment.from_strings(other_tokens, spacy_tokens)
 | 
						|
 | 
						|
 | 
						|
def test_retokenized_docs(doc):
 | 
						|
    a = doc.to_array(["TAG"])
 | 
						|
    doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | 
						|
    doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | 
						|
    example = Example(doc1, doc2)
 | 
						|
    # fmt: off
 | 
						|
    expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | 
						|
    expected2 = [None, "sister", "flew", "to", None, "via", "London", "."]
 | 
						|
    # fmt: on
 | 
						|
    assert example.get_aligned("ORTH", as_string=True) == expected1
 | 
						|
    with doc1.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc1[0:2])
 | 
						|
        retokenizer.merge(doc1[5:7])
 | 
						|
    assert example.get_aligned("ORTH", as_string=True) == expected2
 | 
						|
 | 
						|
 | 
						|
def test_training_before_update(doc):
 | 
						|
    def before_update(nlp, args):
 | 
						|
        assert args["step"] == 0
 | 
						|
        assert args["epoch"] == 1
 | 
						|
 | 
						|
        # Raise an error here as the rest of the loop
 | 
						|
        # will not run to completion due to uninitialized
 | 
						|
        # models.
 | 
						|
        raise ValueError("ran_before_update")
 | 
						|
 | 
						|
    def generate_batch():
 | 
						|
        yield 1, [Example(doc, doc)]
 | 
						|
 | 
						|
    nlp = spacy.blank("en")
 | 
						|
    nlp.add_pipe("tagger")
 | 
						|
    optimizer = Adam()
 | 
						|
    generator = train_while_improving(
 | 
						|
        nlp,
 | 
						|
        optimizer,
 | 
						|
        generate_batch(),
 | 
						|
        lambda: None,
 | 
						|
        dropout=0.1,
 | 
						|
        eval_frequency=100,
 | 
						|
        accumulate_gradient=10,
 | 
						|
        patience=10,
 | 
						|
        max_steps=100,
 | 
						|
        exclude=[],
 | 
						|
        annotating_components=[],
 | 
						|
        before_update=before_update,
 | 
						|
    )
 | 
						|
 | 
						|
    with pytest.raises(ValueError, match="ran_before_update"):
 | 
						|
        for _ in generator:
 | 
						|
            pass
 |