mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			472 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, bounds_check=False, profile=True
 | |
| from libc.string cimport memcpy, memset
 | |
| from libc.stdlib cimport malloc, free
 | |
| from cymem.cymem cimport Pool
 | |
| 
 | |
| from thinc.api import get_array_module
 | |
| import numpy
 | |
| 
 | |
| from .doc cimport Doc, set_children_from_heads, token_by_start, token_by_end
 | |
| from .span cimport Span
 | |
| from .token cimport Token
 | |
| from ..lexeme cimport Lexeme, EMPTY_LEXEME
 | |
| from ..structs cimport LexemeC, TokenC
 | |
| from ..attrs cimport MORPH, NORM
 | |
| from ..vocab cimport Vocab
 | |
| 
 | |
| from .underscore import is_writable_attr
 | |
| from ..attrs import intify_attrs
 | |
| from ..util import SimpleFrozenDict
 | |
| from ..errors import Errors
 | |
| from ..strings import get_string_id
 | |
| 
 | |
| 
 | |
| cdef class Retokenizer:
 | |
|     """Helper class for doc.retokenize() context manager.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/doc#retokenize
 | |
|     USAGE: https://spacy.io/usage/linguistic-features#retokenization
 | |
|     """
 | |
|     cdef Doc doc
 | |
|     cdef list merges
 | |
|     cdef list splits
 | |
|     cdef set tokens_to_merge
 | |
|     cdef list _spans_to_merge
 | |
| 
 | |
|     def __init__(self, doc):
 | |
|         self.doc = doc
 | |
|         self.merges = []
 | |
|         self.splits = []
 | |
|         self.tokens_to_merge = set()
 | |
|         self._spans_to_merge = []  # keep a record to filter out duplicates
 | |
| 
 | |
|     def merge(self, Span span, attrs=SimpleFrozenDict()):
 | |
|         """Mark a span for merging. The attrs will be applied to the resulting
 | |
|         token.
 | |
| 
 | |
|         span (Span): The span to merge.
 | |
|         attrs (dict): Attributes to set on the merged token.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/doc#retokenizer.merge
 | |
|         """
 | |
|         if (span.start, span.end) in self._spans_to_merge:
 | |
|             return
 | |
|         if span.end - span.start <= 0:
 | |
|             raise ValueError(Errors.E199.format(start=span.start, end=span.end))
 | |
|         for token in span:
 | |
|             if token.i in self.tokens_to_merge:
 | |
|                 raise ValueError(Errors.E102.format(token=repr(token)))
 | |
|             self.tokens_to_merge.add(token.i)
 | |
|         self._spans_to_merge.append((span.start, span.end))
 | |
|         attrs = normalize_token_attrs(self.doc.vocab, attrs)
 | |
|         self.merges.append((span, attrs))
 | |
| 
 | |
|     def split(self, Token token, orths, heads, attrs=SimpleFrozenDict()):
 | |
|         """Mark a Token for splitting, into the specified orths. The attrs
 | |
|         will be applied to each subtoken.
 | |
| 
 | |
|         token (Token): The token to split.
 | |
|         orths (list): The verbatim text of the split tokens. Needs to match the
 | |
|             text of the original token.
 | |
|         heads (list): List of token or `(token, subtoken)` tuples specifying the
 | |
|             tokens to attach the newly split subtokens to.
 | |
|         attrs (dict): Attributes to set on all split tokens. Attribute names
 | |
|             mapped to list of per-token attribute values.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/doc#retokenizer.split
 | |
|         """
 | |
|         if ''.join(orths) != token.text:
 | |
|             raise ValueError(Errors.E117.format(new=''.join(orths), old=token.text))
 | |
|         if "_" in attrs:  # Extension attributes
 | |
|             extensions = attrs["_"]
 | |
|             for extension in extensions:
 | |
|                 _validate_extensions(extension)
 | |
|             attrs = {key: value for key, value in attrs.items() if key != "_"}
 | |
|             # NB: Since we support {"KEY": [value, value]} syntax here, this
 | |
|             # will only "intify" the keys, not the values
 | |
|             attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
 | |
|             attrs["_"] = extensions
 | |
|         else:
 | |
|             # NB: Since we support {"KEY": [value, value]} syntax here, this
 | |
|             # will only "intify" the keys, not the values
 | |
|             attrs = intify_attrs(attrs, strings_map=self.doc.vocab.strings)
 | |
|         if MORPH in attrs:
 | |
|             for i, morph in enumerate(attrs[MORPH]):
 | |
|                 # add and set to normalized value
 | |
|                 morph = self.doc.vocab.morphology.add(self.doc.vocab.strings.as_string(morph))
 | |
|                 attrs[MORPH][i] = morph
 | |
|         head_offsets = []
 | |
|         for head in heads:
 | |
|             if isinstance(head, Token):
 | |
|                 head_offsets.append((head.idx, 0))
 | |
|             else:
 | |
|                 head_offsets.append((head[0].idx, head[1]))
 | |
|         self.splits.append((token.idx, orths, head_offsets, attrs))
 | |
| 
 | |
|     def __enter__(self):
 | |
|         self.merges = []
 | |
|         self.splits = []
 | |
|         return self
 | |
| 
 | |
|     def __exit__(self, *args):
 | |
|         # Do the actual merging here
 | |
|         if len(self.merges) >= 1:
 | |
|             _merge(self.doc, self.merges)
 | |
|         # Iterate in order, to keep things simple.
 | |
|         for start_char, orths, heads, attrs in sorted(self.splits):
 | |
|             # Resolve token index
 | |
|             token_index = token_by_start(self.doc.c, self.doc.length, start_char)
 | |
|             # Check we're still able to find tokens starting at the character offsets
 | |
|             # referred to in the splits. If we merged these tokens previously, we
 | |
|             # have to raise an error
 | |
|             if token_index == -1:
 | |
|                 raise IndexError(Errors.E122)
 | |
|             head_indices = []
 | |
|             for head_char, subtoken in heads:
 | |
|                 head_index = token_by_start(self.doc.c, self.doc.length, head_char)
 | |
|                 if head_index == -1:
 | |
|                     raise IndexError(Errors.E123)
 | |
|                 # We want to refer to the token index of the head *after* the
 | |
|                 # mergery. We need to account for the extra tokens introduced.
 | |
|                 # e.g., let's say we have [ab, c] and we want a and b to depend
 | |
|                 # on c. The correct index for c will be 2, not 1.
 | |
|                 if head_index > token_index:
 | |
|                     head_index += len(orths)-1
 | |
|                 head_indices.append(head_index+subtoken)
 | |
|             _split(self.doc, token_index, orths, head_indices, attrs)
 | |
| 
 | |
| 
 | |
| def _merge(Doc doc, merges):
 | |
|     """Retokenize the document, such that the spans described in 'merges'
 | |
|      are merged into a single token. This method assumes that the merges
 | |
|      are in the same order at which they appear in the doc, and that merges
 | |
|      do not intersect each other in any way.
 | |
| 
 | |
|     merges: Tokens to merge, and corresponding attributes to assign to the
 | |
|         merged token. By default, attributes are inherited from the
 | |
|         syntactic root of the span.
 | |
|     RETURNS (Token): The first newly merged token.
 | |
|     """
 | |
|     cdef int i, merge_index, start, end, token_index, current_span_index, current_offset, offset, span_index
 | |
|     cdef Span span
 | |
|     cdef const LexemeC* lex
 | |
|     cdef TokenC* token
 | |
|     cdef Pool mem = Pool()
 | |
|     cdef int merged_iob = 0
 | |
| 
 | |
|     # merges should not be empty, but make sure to avoid zero-length mem alloc
 | |
|     assert len(merges) > 0
 | |
|     tokens = <TokenC**>mem.alloc(len(merges), sizeof(TokenC))
 | |
|     spans = []
 | |
| 
 | |
|     def _get_start(merge):
 | |
|         return merge[0].start
 | |
| 
 | |
|     merges.sort(key=_get_start)
 | |
|     for merge_index, (span, attributes) in enumerate(merges):
 | |
|         start = span.start
 | |
|         end = span.end
 | |
|         spans.append(span)
 | |
|         # House the new merged token where it starts
 | |
|         token = &doc.c[start]
 | |
|         start_ent_iob = doc.c[start].ent_iob
 | |
|         start_ent_type = doc.c[start].ent_type
 | |
|         # Initially set attributes to attributes of span root
 | |
|         token.tag = doc.c[span.root.i].tag
 | |
|         token.pos = doc.c[span.root.i].pos
 | |
|         token.morph = doc.c[span.root.i].morph
 | |
|         token.ent_iob = doc.c[span.root.i].ent_iob
 | |
|         token.ent_type = doc.c[span.root.i].ent_type
 | |
|         merged_iob = token.ent_iob
 | |
|         # If span root is part of an entity, merged token is B-ENT
 | |
|         if token.ent_iob in (1, 3):
 | |
|             merged_iob = 3
 | |
|             # If start token is I-ENT and previous token is of the same
 | |
|             # type, then I-ENT (could check I-ENT from start to span root)
 | |
|             if start_ent_iob == 1 and start > 0 \
 | |
|                     and start_ent_type == token.ent_type \
 | |
|                     and doc.c[start - 1].ent_type == token.ent_type:
 | |
|                 merged_iob = 1
 | |
|         token.ent_iob = merged_iob
 | |
|         # Set lemma to concatenated lemmas
 | |
|         merged_lemma = ""
 | |
|         for span_token in span:
 | |
|             merged_lemma += span_token.lemma_
 | |
|             if doc.c[span_token.i].spacy:
 | |
|                 merged_lemma += " "
 | |
|         merged_lemma = merged_lemma.strip()
 | |
|         token.lemma = doc.vocab.strings.add(merged_lemma)
 | |
|         # Unset attributes that don't match new token
 | |
|         token.norm = 0
 | |
|         tokens[merge_index] = token
 | |
|     # Resize the doc.tensor, if it's set. Let the last row for each token stand
 | |
|     # for the merged region. To do this, we create a boolean array indicating
 | |
|     # whether the row is to be deleted, then use numpy.delete
 | |
|     if doc.tensor is not None and doc.tensor.size != 0:
 | |
|         doc.tensor = _resize_tensor(doc.tensor,
 | |
|             [(m[0].start, m[0].end) for m in merges])
 | |
|     # Memorize span roots and sets dependencies of the newly merged
 | |
|     # tokens to the dependencies of their roots.
 | |
|     span_roots = []
 | |
|     for i, span in enumerate(spans):
 | |
|         span_roots.append(span.root.i)
 | |
|         tokens[i].dep = span.root.dep
 | |
|     # We update token.lex after keeping span root and dep, since
 | |
|     # setting token.lex will change span.start and span.end properties
 | |
|     # as it modifies the character offsets in the doc
 | |
|     for token_index, (span, attributes) in enumerate(merges):
 | |
|         new_orth = ''.join([t.text_with_ws for t in spans[token_index]])
 | |
|         if spans[token_index][-1].whitespace_:
 | |
|             new_orth = new_orth[:-len(spans[token_index][-1].whitespace_)]
 | |
|         # add the vector of the (merged) entity to the vocab
 | |
|         if not doc.vocab.get_vector(new_orth).any():
 | |
|             if doc.vocab.vectors_length > 0:
 | |
|                 doc.vocab.set_vector(new_orth, span.vector)
 | |
|         token = tokens[token_index]
 | |
|         lex = doc.vocab.get(doc.mem, new_orth)
 | |
|         token.lex = lex
 | |
|         # We set trailing space here too
 | |
|         token.spacy = doc.c[spans[token_index].end-1].spacy
 | |
|         set_token_attrs(span[0], attributes)
 | |
|     # Begin by setting all the head indices to absolute token positions
 | |
|     # This is easier to work with for now than the offsets
 | |
|     # Before thinking of something simpler, beware the case where a
 | |
|     # dependency bridges over the entity. Here the alignment of the
 | |
|     # tokens changes.
 | |
|     for i in range(doc.length):
 | |
|         doc.c[i].head += i
 | |
|     # Set the head of the merged token from the Span
 | |
|     for i in range(len(merges)):
 | |
|         tokens[i].head = doc.c[span_roots[i]].head
 | |
|     # Adjust deps before shrinking tokens
 | |
|     # Tokens which point into the merged token should now point to it
 | |
|     # Subtract the offset from all tokens which point to >= end
 | |
|     offsets = []
 | |
|     current_span_index = 0
 | |
|     current_offset = 0
 | |
|     for i in range(doc.length):
 | |
|         if current_span_index < len(spans) and i == spans[current_span_index].end:
 | |
|             # Last token was the last of the span
 | |
|             current_offset += (spans[current_span_index].end - spans[current_span_index].start) -1
 | |
|             current_span_index += 1
 | |
|         if current_span_index < len(spans) and \
 | |
|                 spans[current_span_index].start <= i < spans[current_span_index].end:
 | |
|             offsets.append(spans[current_span_index].start - current_offset)
 | |
|         else:
 | |
|             offsets.append(i - current_offset)
 | |
|     for i in range(doc.length):
 | |
|         doc.c[i].head = offsets[doc.c[i].head]
 | |
|     # Now compress the token array
 | |
|     offset = 0
 | |
|     in_span = False
 | |
|     span_index = 0
 | |
|     for i in range(doc.length):
 | |
|         if in_span and i == spans[span_index].end:
 | |
|             # First token after a span
 | |
|             in_span = False
 | |
|             span_index += 1
 | |
|         if span_index < len(spans) and i == spans[span_index].start:
 | |
|             # First token in a span
 | |
|             doc.c[i - offset] = doc.c[i] # move token to its place
 | |
|             offset += (spans[span_index].end - spans[span_index].start) - 1
 | |
|             in_span = True
 | |
|         if not in_span:
 | |
|             doc.c[i - offset] = doc.c[i] # move token to its place
 | |
| 
 | |
|     for i in range(doc.length - offset, doc.length):
 | |
|         memset(&doc.c[i], 0, sizeof(TokenC))
 | |
|         doc.c[i].lex = &EMPTY_LEXEME
 | |
|     doc.length -= offset
 | |
|     # ...And, set heads back to a relative position
 | |
|     for i in range(doc.length):
 | |
|         doc.c[i].head -= i
 | |
|     # Set the left/right children, left/right edges
 | |
|     if doc.has_annotation("DEP"):
 | |
|         set_children_from_heads(doc.c, 0, doc.length)
 | |
|     # Make sure ent_iob remains consistent
 | |
|     make_iob_consistent(doc.c, doc.length)
 | |
|     # Return the merged Python object
 | |
|     return doc[spans[0].start]
 | |
| 
 | |
| 
 | |
| def _resize_tensor(tensor, ranges):
 | |
|     delete = []
 | |
|     for start, end in ranges:
 | |
|         for i in range(start, end-1):
 | |
|             delete.append(i)
 | |
|     xp = get_array_module(tensor)
 | |
|     if xp is numpy:
 | |
|         return xp.delete(tensor, delete, axis=0)
 | |
|     else:
 | |
|         offset = 0
 | |
|         copy_start = 0
 | |
|         resized_shape = (tensor.shape[0] - len(delete), tensor.shape[1])
 | |
|         for start, end in ranges:
 | |
|             if copy_start > 0:
 | |
|                 tensor[copy_start - offset:start - offset] = tensor[copy_start: start]
 | |
|             offset += end - start - 1
 | |
|             copy_start = end - 1
 | |
|         tensor[copy_start - offset:resized_shape[0]] = tensor[copy_start:]
 | |
|         return xp.asarray(tensor[:resized_shape[0]])
 | |
| 
 | |
| 
 | |
| def _split(Doc doc, int token_index, orths, heads, attrs):
 | |
|     """Retokenize the document, such that the token at
 | |
|     `doc[token_index]` is split into tokens with the orth 'orths'
 | |
|     token_index(int): token index of the token to split.
 | |
| 
 | |
|     orths: IDs of the verbatim text content of the tokens to create
 | |
|     **attributes: Attributes to assign to each of the newly created tokens. By default,
 | |
|         attributes are inherited from the original token.
 | |
|     RETURNS (Token): The first newly created token.
 | |
|     """
 | |
|     cdef int nb_subtokens = len(orths)
 | |
|     cdef const LexemeC* lex
 | |
|     cdef TokenC* token
 | |
|     cdef TokenC orig_token = doc.c[token_index]
 | |
|     cdef int orig_length = len(doc)
 | |
| 
 | |
|     if(len(heads) != nb_subtokens):
 | |
|         raise ValueError(Errors.E115)
 | |
|     # First, make the dependencies absolutes
 | |
|     for i in range(doc.length):
 | |
|         doc.c[i].head += i
 | |
|     # Adjust dependencies, so they refer to post-split indexing
 | |
|     offset = nb_subtokens - 1
 | |
|     for i in range(doc.length):
 | |
|         if doc.c[i].head > token_index:
 | |
|             doc.c[i].head += offset
 | |
|     # Double doc.c max_length if necessary (until big enough for all new tokens)
 | |
|     while doc.length + nb_subtokens - 1 >= doc.max_length:
 | |
|         doc._realloc(doc.max_length * 2)
 | |
|     # Move tokens after the split to create space for the new tokens
 | |
|     doc.length = len(doc) + nb_subtokens -1
 | |
|     to_process_tensor = (doc.tensor is not None and doc.tensor.size != 0)
 | |
|     if to_process_tensor:
 | |
|         xp = get_array_module(doc.tensor)
 | |
|         if xp is numpy:
 | |
|             doc.tensor = xp.append(doc.tensor, xp.zeros((nb_subtokens,doc.tensor.shape[1]), dtype="float32"), axis=0)
 | |
|         else:
 | |
|             shape = (doc.tensor.shape[0] + nb_subtokens, doc.tensor.shape[1])
 | |
|             resized_array = xp.zeros(shape, dtype="float32")
 | |
|             resized_array[:doc.tensor.shape[0]] = doc.tensor[:doc.tensor.shape[0]]
 | |
|             doc.tensor = resized_array
 | |
|     for token_to_move in range(orig_length - 1, token_index, -1):
 | |
|         doc.c[token_to_move + nb_subtokens - 1] = doc.c[token_to_move]
 | |
|         if to_process_tensor:
 | |
|             doc.tensor[token_to_move + nb_subtokens - 1] = doc.tensor[token_to_move]
 | |
|     # Host the tokens in the newly created space
 | |
|     cdef int idx_offset = 0
 | |
|     for i, orth in enumerate(orths):
 | |
|         token = &doc.c[token_index + i]
 | |
|         lex = doc.vocab.get(doc.mem, orth)
 | |
|         token.lex = lex
 | |
|         # If lemma is currently set, set default lemma to orth
 | |
|         if token.lemma != 0:
 | |
|             token.lemma = lex.orth
 | |
|         token.norm = 0  # reset norm
 | |
|         if to_process_tensor:
 | |
|             # setting the tensors of the split tokens to array of zeros
 | |
|             doc.tensor[token_index + i:token_index + i + 1] = xp.zeros((1,doc.tensor.shape[1]), dtype="float32")
 | |
|         # Update the character offset of the subtokens
 | |
|         if i != 0:
 | |
|             token.idx = orig_token.idx + idx_offset
 | |
|         idx_offset += len(orth)
 | |
|         # Set token.spacy to False for all non-last split tokens, and
 | |
|         # to origToken.spacy for the last token
 | |
|         if (i < nb_subtokens - 1):
 | |
|             token.spacy = False
 | |
|         else:
 | |
|             token.spacy = orig_token.spacy
 | |
|         # Make IOB consistent
 | |
|         if (orig_token.ent_iob == 3):
 | |
|             if i == 0:
 | |
|                 token.ent_iob = 3
 | |
|             else:
 | |
|                 token.ent_iob = 1
 | |
|         else:
 | |
|             # In all other cases subtokens inherit iob from origToken
 | |
|             token.ent_iob = orig_token.ent_iob
 | |
|     # Apply attrs to each subtoken
 | |
|     for attr_name, attr_values in attrs.items():
 | |
|         for i, attr_value in enumerate(attr_values):
 | |
|             token = &doc.c[token_index + i]
 | |
|             if attr_name == "_":
 | |
|                 for ext_attr_key, ext_attr_value in attr_value.items():
 | |
|                     doc[token_index + i]._.set(ext_attr_key, ext_attr_value)
 | |
|             # NB: We need to call get_string_id here because only the keys are
 | |
|             # "intified" (since we support "KEY": [value, value] syntax here).
 | |
|             else:
 | |
|                 # Set attributes on both token and lexeme to take care of token
 | |
|                 # attribute vs. lexical attribute without having to enumerate
 | |
|                 # them. If an attribute name is not valid, set_struct_attr will
 | |
|                 # ignore it. Exception: set NORM only on tokens.
 | |
|                 Token.set_struct_attr(token, attr_name, get_string_id(attr_value))
 | |
|                 if attr_name != NORM:
 | |
|                     Lexeme.set_struct_attr(<LexemeC*>token.lex, attr_name, get_string_id(attr_value))
 | |
|     # Assign correct dependencies to the inner token
 | |
|     for i, head in enumerate(heads):
 | |
|         doc.c[token_index + i].head = head
 | |
|     # Transform the dependencies into relative ones again
 | |
|     for i in range(doc.length):
 | |
|         doc.c[i].head -= i
 | |
|     # set children from head
 | |
|     if doc.has_annotation("DEP"):
 | |
|         set_children_from_heads(doc.c, 0, doc.length)
 | |
| 
 | |
| 
 | |
| def _validate_extensions(extensions):
 | |
|     if not isinstance(extensions, dict):
 | |
|         raise ValueError(Errors.E120.format(value=repr(extensions)))
 | |
|     for key, value in extensions.items():
 | |
|         # Get the extension and make sure it's available and writable
 | |
|         extension = Token.get_extension(key)
 | |
|         if not extension:  # Extension attribute doesn't exist
 | |
|             raise ValueError(Errors.E118.format(attr=key))
 | |
|         if not is_writable_attr(extension):
 | |
|             raise ValueError(Errors.E119.format(attr=key))
 | |
| 
 | |
| 
 | |
| cdef make_iob_consistent(TokenC* tokens, int length):
 | |
|     cdef int i
 | |
|     if tokens[0].ent_iob == 1:
 | |
|         tokens[0].ent_iob = 3
 | |
|     for i in range(1, length):
 | |
|         if tokens[i].ent_iob == 1 and tokens[i - 1].ent_type != tokens[i].ent_type:
 | |
|             tokens[i].ent_iob = 3
 | |
| 
 | |
| 
 | |
| def normalize_token_attrs(Vocab vocab, attrs):
 | |
|     if "_" in attrs:  # Extension attributes
 | |
|         extensions = attrs["_"]
 | |
|         _validate_extensions(extensions)
 | |
|         attrs = {key: value for key, value in attrs.items() if key != "_"}
 | |
|         attrs = intify_attrs(attrs, strings_map=vocab.strings)
 | |
|         attrs["_"] = extensions
 | |
|     else:
 | |
|         attrs = intify_attrs(attrs, strings_map=vocab.strings)
 | |
|     if MORPH in attrs:
 | |
|         # add and set to normalized value
 | |
|         morph = vocab.morphology.add(vocab.strings.as_string(attrs[MORPH]))
 | |
|         attrs[MORPH] = morph
 | |
|     return attrs
 | |
| 
 | |
| 
 | |
| def set_token_attrs(Token py_token, attrs):
 | |
|     cdef TokenC* token = py_token.c
 | |
|     cdef const LexemeC* lex = token.lex
 | |
|     cdef Doc doc = py_token.doc
 | |
|     # Assign attributes
 | |
|     for attr_name, attr_value in attrs.items():
 | |
|         if attr_name == "_":  # Set extension attributes
 | |
|             for ext_attr_key, ext_attr_value in attr_value.items():
 | |
|                 py_token._.set(ext_attr_key, ext_attr_value)
 | |
|         else:
 | |
|             # Set attributes on both token and lexeme to take care of token
 | |
|             # attribute vs. lexical attribute without having to enumerate
 | |
|             # them. If an attribute name is not valid, set_struct_attr will
 | |
|             # ignore it. Exception: set NORM only on tokens.
 | |
|             Token.set_struct_attr(token, attr_name, attr_value)
 | |
|             if attr_name != NORM:
 | |
|                 Lexeme.set_struct_attr(<LexemeC*>lex, attr_name, attr_value)
 |