mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			198 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			198 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional, Callable, Iterable, Union, List
 | 
						|
from thinc.api import Config, fix_random_seed, set_gpu_allocator, Model, Optimizer
 | 
						|
from thinc.api import set_dropout_rate
 | 
						|
from pathlib import Path
 | 
						|
from collections import Counter
 | 
						|
import srsly
 | 
						|
import time
 | 
						|
import re
 | 
						|
from wasabi import Printer
 | 
						|
 | 
						|
from .example import Example
 | 
						|
from ..tokens import Doc
 | 
						|
from ..schemas import ConfigSchemaPretrain
 | 
						|
from ..util import registry, load_model_from_config, dot_to_object
 | 
						|
 | 
						|
 | 
						|
def pretrain(
 | 
						|
    config: Config,
 | 
						|
    output_dir: Path,
 | 
						|
    resume_path: Optional[Path] = None,
 | 
						|
    epoch_resume: Optional[int] = None,
 | 
						|
    use_gpu: int = -1,
 | 
						|
    silent: bool = True,
 | 
						|
):
 | 
						|
    msg = Printer(no_print=silent)
 | 
						|
    if config["training"]["seed"] is not None:
 | 
						|
        fix_random_seed(config["training"]["seed"])
 | 
						|
    allocator = config["training"]["gpu_allocator"]
 | 
						|
    if use_gpu >= 0 and allocator:
 | 
						|
        set_gpu_allocator(allocator)
 | 
						|
    nlp = load_model_from_config(config)
 | 
						|
    _config = nlp.config.interpolate()
 | 
						|
    P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain)
 | 
						|
    corpus = dot_to_object(_config, P["corpus"])
 | 
						|
    corpus = registry.resolve({"corpus": corpus})["corpus"]
 | 
						|
    batcher = P["batcher"]
 | 
						|
    model = create_pretraining_model(nlp, P)
 | 
						|
    optimizer = P["optimizer"]
 | 
						|
    # Load in pretrained weights to resume from
 | 
						|
    if resume_path is not None:
 | 
						|
        _resume_model(model, resume_path, epoch_resume, silent=silent)
 | 
						|
    else:
 | 
						|
        # Without '--resume-path' the '--epoch-resume' argument is ignored
 | 
						|
        epoch_resume = 0
 | 
						|
    objective = model.attrs["loss"]
 | 
						|
    # TODO: move this to logger function?
 | 
						|
    tracker = ProgressTracker(frequency=10000)
 | 
						|
    msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
 | 
						|
    row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
 | 
						|
    msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
 | 
						|
 | 
						|
    def _save_model(epoch, is_temp=False):
 | 
						|
        is_temp_str = ".temp" if is_temp else ""
 | 
						|
        with model.use_params(optimizer.averages):
 | 
						|
            with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
 | 
						|
                file_.write(model.get_ref("tok2vec").to_bytes())
 | 
						|
            log = {
 | 
						|
                "nr_word": tracker.nr_word,
 | 
						|
                "loss": tracker.loss,
 | 
						|
                "epoch_loss": tracker.epoch_loss,
 | 
						|
                "epoch": epoch,
 | 
						|
            }
 | 
						|
            with (output_dir / "log.jsonl").open("a") as file_:
 | 
						|
                file_.write(srsly.json_dumps(log) + "\n")
 | 
						|
 | 
						|
    # TODO: I think we probably want this to look more like the
 | 
						|
    # 'create_train_batches' function?
 | 
						|
    for epoch in range(epoch_resume, P["max_epochs"]):
 | 
						|
        for batch_id, batch in enumerate(batcher(corpus(nlp))):
 | 
						|
            docs = ensure_docs(batch)
 | 
						|
            loss = make_update(model, docs, optimizer, objective)
 | 
						|
            progress = tracker.update(epoch, loss, docs)
 | 
						|
            if progress:
 | 
						|
                msg.row(progress, **row_settings)
 | 
						|
            if P["n_save_every"] and (batch_id % P["n_save_every"] == 0):
 | 
						|
                _save_model(epoch, is_temp=True)
 | 
						|
        _save_model(epoch)
 | 
						|
        tracker.epoch_loss = 0.0
 | 
						|
 | 
						|
 | 
						|
def ensure_docs(examples_or_docs: Iterable[Union[Doc, Example]]) -> List[Doc]:
 | 
						|
    docs = []
 | 
						|
    for eg_or_doc in examples_or_docs:
 | 
						|
        if isinstance(eg_or_doc, Doc):
 | 
						|
            docs.append(eg_or_doc)
 | 
						|
        else:
 | 
						|
            docs.append(eg_or_doc.reference)
 | 
						|
    return docs
 | 
						|
 | 
						|
 | 
						|
def _resume_model(
 | 
						|
    model: Model, resume_path: Path, epoch_resume: int, silent: bool = True
 | 
						|
) -> None:
 | 
						|
    msg = Printer(no_print=silent)
 | 
						|
    msg.info(f"Resume training tok2vec from: {resume_path}")
 | 
						|
    with resume_path.open("rb") as file_:
 | 
						|
        weights_data = file_.read()
 | 
						|
        model.get_ref("tok2vec").from_bytes(weights_data)
 | 
						|
    # Parse the epoch number from the given weight file
 | 
						|
    model_name = re.search(r"model\d+\.bin", str(resume_path))
 | 
						|
    if model_name:
 | 
						|
        # Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
 | 
						|
        epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
 | 
						|
        msg.info(f"Resuming from epoch: {epoch_resume}")
 | 
						|
    else:
 | 
						|
        msg.info(f"Resuming from epoch: {epoch_resume}")
 | 
						|
 | 
						|
 | 
						|
def make_update(
 | 
						|
    model: Model, docs: Iterable[Doc], optimizer: Optimizer, objective_func: Callable
 | 
						|
) -> float:
 | 
						|
    """Perform an update over a single batch of documents.
 | 
						|
 | 
						|
    docs (iterable): A batch of `Doc` objects.
 | 
						|
    optimizer (callable): An optimizer.
 | 
						|
    RETURNS loss: A float for the loss.
 | 
						|
    """
 | 
						|
    predictions, backprop = model.begin_update(docs)
 | 
						|
    loss, gradients = objective_func(model.ops, docs, predictions)
 | 
						|
    backprop(gradients)
 | 
						|
    model.finish_update(optimizer)
 | 
						|
    # Don't want to return a cupy object here
 | 
						|
    # The gradients are modified in-place by the BERT MLM,
 | 
						|
    # so we get an accurate loss
 | 
						|
    return float(loss)
 | 
						|
 | 
						|
 | 
						|
def create_pretraining_model(nlp, pretrain_config):
 | 
						|
    """Define a network for the pretraining. We simply add an output layer onto
 | 
						|
    the tok2vec input model. The tok2vec input model needs to be a model that
 | 
						|
    takes a batch of Doc objects (as a list), and returns a list of arrays.
 | 
						|
    Each array in the output needs to have one row per token in the doc.
 | 
						|
    The actual tok2vec layer is stored as a reference, and only this bit will be
 | 
						|
    serialized to file and read back in when calling the 'train' command.
 | 
						|
    """
 | 
						|
    nlp.initialize()
 | 
						|
    component = nlp.get_pipe(pretrain_config["component"])
 | 
						|
    if pretrain_config.get("layer"):
 | 
						|
        tok2vec = component.model.get_ref(pretrain_config["layer"])
 | 
						|
    else:
 | 
						|
        tok2vec = component.model
 | 
						|
 | 
						|
    create_function = pretrain_config["objective"]
 | 
						|
    model = create_function(nlp.vocab, tok2vec)
 | 
						|
    model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
 | 
						|
    set_dropout_rate(model, pretrain_config["dropout"])
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
class ProgressTracker:
 | 
						|
    def __init__(self, frequency=1000000):
 | 
						|
        self.loss = 0.0
 | 
						|
        self.prev_loss = 0.0
 | 
						|
        self.nr_word = 0
 | 
						|
        self.words_per_epoch = Counter()
 | 
						|
        self.frequency = frequency
 | 
						|
        self.last_time = time.time()
 | 
						|
        self.last_update = 0
 | 
						|
        self.epoch_loss = 0.0
 | 
						|
 | 
						|
    def update(self, epoch, loss, docs):
 | 
						|
        self.loss += loss
 | 
						|
        self.epoch_loss += loss
 | 
						|
        words_in_batch = sum(len(doc) for doc in docs)
 | 
						|
        self.words_per_epoch[epoch] += words_in_batch
 | 
						|
        self.nr_word += words_in_batch
 | 
						|
        words_since_update = self.nr_word - self.last_update
 | 
						|
        if words_since_update >= self.frequency:
 | 
						|
            wps = words_since_update / (time.time() - self.last_time)
 | 
						|
            self.last_update = self.nr_word
 | 
						|
            self.last_time = time.time()
 | 
						|
            loss_per_word = self.loss - self.prev_loss
 | 
						|
            status = (
 | 
						|
                epoch,
 | 
						|
                self.nr_word,
 | 
						|
                _smart_round(self.loss, width=10),
 | 
						|
                _smart_round(loss_per_word, width=6),
 | 
						|
                int(wps),
 | 
						|
            )
 | 
						|
            self.prev_loss = float(self.loss)
 | 
						|
            return status
 | 
						|
        else:
 | 
						|
            return None
 | 
						|
 | 
						|
 | 
						|
def _smart_round(
 | 
						|
    figure: Union[float, int], width: int = 10, max_decimal: int = 4
 | 
						|
) -> str:
 | 
						|
    """Round large numbers as integers, smaller numbers as decimals."""
 | 
						|
    n_digits = len(str(int(figure)))
 | 
						|
    n_decimal = width - (n_digits + 1)
 | 
						|
    if n_decimal <= 1:
 | 
						|
        return str(int(figure))
 | 
						|
    else:
 | 
						|
        n_decimal = min(n_decimal, max_decimal)
 | 
						|
        format_str = "%." + str(n_decimal) + "f"
 | 
						|
        return format_str % figure
 |