mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-03 22:06:37 +03:00
676e75838f
* Include Doc.cats in to_bytes() * Include Doc.cats in DocBin serialization * Add tests for serialization of cats Test serialization of cats for Doc and DocBin.
208 lines
7.6 KiB
Python
208 lines
7.6 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy
|
|
import zlib
|
|
import srsly
|
|
from thinc.neural.ops import NumpyOps
|
|
|
|
from ..compat import copy_reg
|
|
from ..tokens import Doc
|
|
from ..attrs import SPACY, ORTH, intify_attr
|
|
from ..errors import Errors
|
|
|
|
|
|
class DocBin(object):
|
|
"""Pack Doc objects for binary serialization.
|
|
|
|
The DocBin class lets you efficiently serialize the information from a
|
|
collection of Doc objects. You can control which information is serialized
|
|
by passing a list of attribute IDs, and optionally also specify whether the
|
|
user data is serialized. The DocBin is faster and produces smaller data
|
|
sizes than pickle, and allows you to deserialize without executing arbitrary
|
|
Python code.
|
|
|
|
The serialization format is gzipped msgpack, where the msgpack object has
|
|
the following structure:
|
|
|
|
{
|
|
"attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
|
|
"tokens": bytes, # Serialized numpy uint64 array with the token data
|
|
"spaces": bytes, # Serialized numpy boolean array with spaces data
|
|
"lengths": bytes, # Serialized numpy int32 array with the doc lengths
|
|
"strings": List[unicode] # List of unique strings in the token data
|
|
}
|
|
|
|
Strings for the words, tags, labels etc are represented by 64-bit hashes in
|
|
the token data, and every string that occurs at least once is passed via the
|
|
strings object. This means the storage is more efficient if you pack more
|
|
documents together, because you have less duplication in the strings.
|
|
|
|
A notable downside to this format is that you can't easily extract just one
|
|
document from the DocBin.
|
|
"""
|
|
|
|
def __init__(self, attrs=None, store_user_data=False):
|
|
"""Create a DocBin object to hold serialized annotations.
|
|
|
|
attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
|
|
always serialized, so they're not required. Defaults to None.
|
|
store_user_data (bool): Whether to include the `Doc.user_data`.
|
|
RETURNS (DocBin): The newly constructed object.
|
|
|
|
DOCS: https://spacy.io/api/docbin#init
|
|
"""
|
|
attrs = attrs or []
|
|
attrs = sorted([intify_attr(attr) for attr in attrs])
|
|
self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
|
|
self.attrs.insert(0, ORTH) # Ensure ORTH is always attrs[0]
|
|
self.tokens = []
|
|
self.spaces = []
|
|
self.cats = []
|
|
self.user_data = []
|
|
self.strings = set()
|
|
self.store_user_data = store_user_data
|
|
|
|
def __len__(self):
|
|
"""RETURNS: The number of Doc objects added to the DocBin."""
|
|
return len(self.tokens)
|
|
|
|
def add(self, doc):
|
|
"""Add a Doc's annotations to the DocBin for serialization.
|
|
|
|
doc (Doc): The Doc object to add.
|
|
|
|
DOCS: https://spacy.io/api/docbin#add
|
|
"""
|
|
array = doc.to_array(self.attrs)
|
|
if len(array.shape) == 1:
|
|
array = array.reshape((array.shape[0], 1))
|
|
self.tokens.append(array)
|
|
spaces = doc.to_array(SPACY)
|
|
assert array.shape[0] == spaces.shape[0] # this should never happen
|
|
spaces = spaces.reshape((spaces.shape[0], 1))
|
|
self.spaces.append(numpy.asarray(spaces, dtype=bool))
|
|
self.strings.update(w.text for w in doc)
|
|
self.cats.append(doc.cats)
|
|
if self.store_user_data:
|
|
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
|
|
|
|
def get_docs(self, vocab):
|
|
"""Recover Doc objects from the annotations, using the given vocab.
|
|
|
|
vocab (Vocab): The shared vocab.
|
|
YIELDS (Doc): The Doc objects.
|
|
|
|
DOCS: https://spacy.io/api/docbin#get_docs
|
|
"""
|
|
for string in self.strings:
|
|
vocab[string]
|
|
orth_col = self.attrs.index(ORTH)
|
|
for i in range(len(self.tokens)):
|
|
tokens = self.tokens[i]
|
|
spaces = self.spaces[i]
|
|
words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
|
|
doc = Doc(vocab, words=words, spaces=spaces)
|
|
doc = doc.from_array(self.attrs, tokens)
|
|
doc.cats = self.cats[i]
|
|
if self.store_user_data:
|
|
user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
|
|
doc.user_data.update(user_data)
|
|
yield doc
|
|
|
|
def merge(self, other):
|
|
"""Extend the annotations of this DocBin with the annotations from
|
|
another. Will raise an error if the pre-defined attrs of the two
|
|
DocBins don't match.
|
|
|
|
other (DocBin): The DocBin to merge into the current bin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#merge
|
|
"""
|
|
if self.attrs != other.attrs:
|
|
raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
|
|
self.tokens.extend(other.tokens)
|
|
self.spaces.extend(other.spaces)
|
|
self.strings.update(other.strings)
|
|
self.cats.extend(other.cats)
|
|
if self.store_user_data:
|
|
self.user_data.extend(other.user_data)
|
|
|
|
def to_bytes(self):
|
|
"""Serialize the DocBin's annotations to a bytestring.
|
|
|
|
RETURNS (bytes): The serialized DocBin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#to_bytes
|
|
"""
|
|
for tokens in self.tokens:
|
|
assert len(tokens.shape) == 2, tokens.shape # this should never happen
|
|
lengths = [len(tokens) for tokens in self.tokens]
|
|
msg = {
|
|
"attrs": self.attrs,
|
|
"tokens": numpy.vstack(self.tokens).tobytes("C"),
|
|
"spaces": numpy.vstack(self.spaces).tobytes("C"),
|
|
"lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
|
|
"strings": list(self.strings),
|
|
"cats": self.cats,
|
|
}
|
|
if self.store_user_data:
|
|
msg["user_data"] = self.user_data
|
|
return zlib.compress(srsly.msgpack_dumps(msg))
|
|
|
|
def from_bytes(self, bytes_data):
|
|
"""Deserialize the DocBin's annotations from a bytestring.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
RETURNS (DocBin): The loaded DocBin.
|
|
|
|
DOCS: https://spacy.io/api/docbin#from_bytes
|
|
"""
|
|
msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
|
|
self.attrs = msg["attrs"]
|
|
self.strings = set(msg["strings"])
|
|
lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
|
|
flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
|
|
flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
|
|
shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
|
|
flat_tokens = flat_tokens.reshape(shape)
|
|
flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
|
|
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
|
|
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
|
|
self.cats = msg["cats"]
|
|
if self.store_user_data and "user_data" in msg:
|
|
self.user_data = list(msg["user_data"])
|
|
for tokens in self.tokens:
|
|
assert len(tokens.shape) == 2, tokens.shape # this should never happen
|
|
return self
|
|
|
|
|
|
def merge_bins(bins):
|
|
merged = None
|
|
for byte_string in bins:
|
|
if byte_string is not None:
|
|
doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
|
|
if merged is None:
|
|
merged = doc_bin
|
|
else:
|
|
merged.merge(doc_bin)
|
|
if merged is not None:
|
|
return merged.to_bytes()
|
|
else:
|
|
return b""
|
|
|
|
|
|
def pickle_bin(doc_bin):
|
|
return (unpickle_bin, (doc_bin.to_bytes(),))
|
|
|
|
|
|
def unpickle_bin(byte_string):
|
|
return DocBin().from_bytes(byte_string)
|
|
|
|
|
|
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
|
|
# Compatibility, as we had named it this previously.
|
|
Binder = DocBin
|
|
|
|
__all__ = ["DocBin"]
|