spaCy/tests/test_docs.py
2015-08-22 22:12:55 +02:00

81 lines
3.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""Sphinx doctest is just too hard. Manually paste doctest examples here"""
@pytest.mark.models
def test_1():
import spacy.en
from spacy.parts_of_speech import ADV
# Load the pipeline, and call it with some text.
nlp = spacy.en.English()
tokens = nlp(u"Give it back, he pleaded abjectly, its mine.",
tag=True, parse=False)
o = u''.join(tok.string.upper() if tok.pos == ADV else tok.string for tok in tokens)
assert u"Give it BACK, he pleaded ABJECTLY, its mine."
o = nlp.vocab[u'back'].prob
assert o == -7.033305644989014
o = nlp.vocab[u'not'].prob
assert o == -5.332601070404053
o = nlp.vocab[u'quietly'].prob
assert o == -11.994928359985352
@pytest.mark.models
def test2():
import spacy.en
from spacy.parts_of_speech import ADV
nlp = spacy.en.English()
# Find log probability of Nth most frequent word
probs = [lex.prob for lex in nlp.vocab]
probs.sort()
is_adverb = lambda tok: tok.pos == ADV and tok.prob < probs[-1000]
tokens = nlp(u"Give it back, he pleaded abjectly, its mine.")
o = u''.join(tok.string.upper() if is_adverb(tok) else tok.string for tok in tokens)
o == u'Give it back, he pleaded ABJECTLY, its mine.'
@pytest.mark.models
def test3():
import spacy.en
from spacy.parts_of_speech import ADV
nlp = spacy.en.English()
# Find log probability of Nth most frequent word
probs = [lex.prob for lex in nlp.vocab]
probs.sort()
is_adverb = lambda tok: tok.pos == ADV and tok.prob < probs[-1000]
tokens = nlp(u"Give it back, he pleaded abjectly, its mine.")
o = u''.join(tok.string.upper() if is_adverb(tok) else tok.string for tok in tokens)
assert o == u'Give it back, he pleaded ABJECTLY, its mine.'
pleaded = tokens[7]
assert pleaded.repvec.shape == (300,)
o = pleaded.repvec[:5]
assert sum(o) != 0
from numpy import dot
from numpy.linalg import norm
cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))
words = [w for w in nlp.vocab if w.is_lower and w.has_repvec]
words.sort(key=lambda w: cosine(w.repvec, pleaded.repvec))
words.reverse()
o = [w.orth_ for w in words[0:20]]
assert o == [u'pleaded', u'pled', u'plead', u'confessed', u'interceded',
u'pleads', u'testified', u'conspired', u'motioned', u'demurred',
u'countersued', u'remonstrated', u'begged', u'apologised',
u'consented', u'acquiesced', u'petitioned', u'quarreled',
u'appealed', u'pleading']
o = [w.orth_ for w in words[50:60]]
assert o == [u'martialed', u'counselled', u'bragged',
u'backtracked', u'caucused', u'refiled', u'dueled', u'mused',
u'dissented', u'yearned']
o = [w.orth_ for w in words[100:110]]
assert o == [u'acquits', u'cabled', u'ducked', u'sentenced',
u'gaoled', u'perjured', u'absconded', u'bargained', u'overstayed',
u'clerked']
#o = [w.orth_ for w in words[1000:1010]]
#assert o == [u'scorned', u'baled', u'righted', u'requested', u'swindled',
# u'posited', u'firebombed', u'slimed', u'deferred', u'sagged']
#o = [w.orth_ for w in words[50000:50010]]
#assert o == [u'fb', u'ford', u'systems', u'puck', u'anglers', u'ik', u'tabloid',
# u'dirty', u'rims', u'artists']