mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			467 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			467 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import numpy
 | 
						|
from numpy.testing import assert_array_equal, assert_almost_equal
 | 
						|
from thinc.api import get_current_ops, Ragged, fix_random_seed
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tokens import SpanGroup
 | 
						|
from spacy.tokens.span_groups import SpanGroups
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.util import registry, make_tempdir
 | 
						|
 | 
						|
OPS = get_current_ops()
 | 
						|
 | 
						|
SPAN_KEY = "labeled_spans"
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
 | 
						|
    (
 | 
						|
        "I like London and Berlin.",
 | 
						|
        {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
TRAIN_DATA_OVERLAPPING = [
 | 
						|
    ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
 | 
						|
    (
 | 
						|
        "I like London and Berlin",
 | 
						|
        {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
 | 
						|
    ),
 | 
						|
    ("", {"spans": {SPAN_KEY: []}}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def make_examples(nlp, data=TRAIN_DATA):
 | 
						|
    train_examples = []
 | 
						|
    for t in data:
 | 
						|
        eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
 | 
						|
        train_examples.append(eg)
 | 
						|
    return train_examples
 | 
						|
 | 
						|
 | 
						|
def test_no_label():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
def test_no_resize():
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    spancat.add_label("Thing")
 | 
						|
    spancat.add_label("Phrase")
 | 
						|
    assert spancat.labels == ("Thing", "Phrase")
 | 
						|
    nlp.initialize()
 | 
						|
    assert spancat.model.get_dim("nO") == 2
 | 
						|
    # this throws an error because the spancat can't be resized after initialization
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        spancat.add_label("Stuff")
 | 
						|
 | 
						|
 | 
						|
def test_implicit_labels():
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    assert len(spancat.labels) == 0
 | 
						|
    train_examples = make_examples(nlp)
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert spancat.labels == ("PERSON", "LOC")
 | 
						|
 | 
						|
 | 
						|
def test_explicit_labels():
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    assert len(spancat.labels) == 0
 | 
						|
    spancat.add_label("PERSON")
 | 
						|
    spancat.add_label("LOC")
 | 
						|
    nlp.initialize()
 | 
						|
    assert spancat.labels == ("PERSON", "LOC")
 | 
						|
 | 
						|
 | 
						|
# TODO figure out why this is flaky
 | 
						|
@pytest.mark.skip(reason="Test is unreliable for unknown reason")
 | 
						|
def test_doc_gc():
 | 
						|
    # If the Doc object is garbage collected, the spans won't be functional afterwards
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    spancat.add_label("PERSON")
 | 
						|
    nlp.initialize()
 | 
						|
    texts = [
 | 
						|
        "Just a sentence.",
 | 
						|
        "I like London and Berlin",
 | 
						|
        "I like Berlin",
 | 
						|
        "I eat ham.",
 | 
						|
    ]
 | 
						|
    all_spans = [doc.spans for doc in nlp.pipe(texts)]
 | 
						|
    for text, spangroups in zip(texts, all_spans):
 | 
						|
        assert isinstance(spangroups, SpanGroups)
 | 
						|
        for key, spangroup in spangroups.items():
 | 
						|
            assert isinstance(spangroup, SpanGroup)
 | 
						|
            # XXX This fails with length 0 sometimes
 | 
						|
            assert len(spangroup) > 0
 | 
						|
            with pytest.raises(RuntimeError):
 | 
						|
                span = spangroup[0]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
 | 
						|
)
 | 
						|
def test_make_spangroup(max_positive, nr_results):
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe(
 | 
						|
        "spancat",
 | 
						|
        config={"spans_key": SPAN_KEY, "threshold": 0.5, "max_positive": max_positive},
 | 
						|
    )
 | 
						|
    doc = nlp.make_doc("Greater London")
 | 
						|
    ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
 | 
						|
    indices = ngram_suggester([doc])[0].dataXd
 | 
						|
    assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
 | 
						|
    labels = ["Thing", "City", "Person", "GreatCity"]
 | 
						|
    scores = numpy.asarray(
 | 
						|
        [[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
 | 
						|
    )
 | 
						|
    spangroup = spancat._make_span_group(doc, indices, scores, labels)
 | 
						|
    assert len(spangroup) == nr_results
 | 
						|
 | 
						|
    # first span is always the second token "London"
 | 
						|
    assert spangroup[0].text == "London"
 | 
						|
    assert spangroup[0].label_ == "City"
 | 
						|
    assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
 | 
						|
 | 
						|
    # second span depends on the number of positives that were allowed
 | 
						|
    assert spangroup[1].text == "Greater London"
 | 
						|
    if max_positive == 1:
 | 
						|
        assert spangroup[1].label_ == "GreatCity"
 | 
						|
        assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
 | 
						|
    else:
 | 
						|
        assert spangroup[1].label_ == "Thing"
 | 
						|
        assert_almost_equal(0.8, spangroup.attrs["scores"][1], 5)
 | 
						|
 | 
						|
    if nr_results > 2:
 | 
						|
        assert spangroup[2].text == "Greater London"
 | 
						|
        if max_positive == 2:
 | 
						|
            assert spangroup[2].label_ == "GreatCity"
 | 
						|
            assert_almost_equal(0.9, spangroup.attrs["scores"][2], 5)
 | 
						|
        else:
 | 
						|
            assert spangroup[2].label_ == "City"
 | 
						|
            assert_almost_equal(0.7, spangroup.attrs["scores"][2], 5)
 | 
						|
 | 
						|
    assert spangroup[-1].text == "Greater London"
 | 
						|
    assert spangroup[-1].label_ == "GreatCity"
 | 
						|
    assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
 | 
						|
 | 
						|
 | 
						|
def test_ngram_suggester(en_tokenizer):
 | 
						|
    # test different n-gram lengths
 | 
						|
    for size in [1, 2, 3]:
 | 
						|
        ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[size])
 | 
						|
        docs = [
 | 
						|
            en_tokenizer(text)
 | 
						|
            for text in [
 | 
						|
                "a",
 | 
						|
                "a b",
 | 
						|
                "a b c",
 | 
						|
                "a b c d",
 | 
						|
                "a b c d e",
 | 
						|
                "a " * 100,
 | 
						|
            ]
 | 
						|
        ]
 | 
						|
        ngrams = ngram_suggester(docs)
 | 
						|
        # span sizes are correct
 | 
						|
        for s in ngrams.data:
 | 
						|
            assert s[1] - s[0] == size
 | 
						|
        # spans are within docs
 | 
						|
        offset = 0
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
 | 
						|
            spans_set = set()
 | 
						|
            for span in spans:
 | 
						|
                assert 0 <= span[0] < len(doc)
 | 
						|
                assert 0 < span[1] <= len(doc)
 | 
						|
                spans_set.add((int(span[0]), int(span[1])))
 | 
						|
            # spans are unique
 | 
						|
            assert spans.shape[0] == len(spans_set)
 | 
						|
            offset += ngrams.lengths[i]
 | 
						|
        # the number of spans is correct
 | 
						|
        assert_array_equal(
 | 
						|
            OPS.to_numpy(ngrams.lengths),
 | 
						|
            [max(0, len(doc) - (size - 1)) for doc in docs],
 | 
						|
        )
 | 
						|
 | 
						|
    # test 1-3-gram suggestions
 | 
						|
    ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
 | 
						|
    docs = [
 | 
						|
        en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
 | 
						|
    ]
 | 
						|
    ngrams = ngram_suggester(docs)
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams.lengths), [1, 3, 6, 9, 12])
 | 
						|
    assert_array_equal(
 | 
						|
        OPS.to_numpy(ngrams.data),
 | 
						|
        [
 | 
						|
            # doc 0
 | 
						|
            [0, 1],
 | 
						|
            # doc 1
 | 
						|
            [0, 1],
 | 
						|
            [1, 2],
 | 
						|
            [0, 2],
 | 
						|
            # doc 2
 | 
						|
            [0, 1],
 | 
						|
            [1, 2],
 | 
						|
            [2, 3],
 | 
						|
            [0, 2],
 | 
						|
            [1, 3],
 | 
						|
            [0, 3],
 | 
						|
            # doc 3
 | 
						|
            [0, 1],
 | 
						|
            [1, 2],
 | 
						|
            [2, 3],
 | 
						|
            [3, 4],
 | 
						|
            [0, 2],
 | 
						|
            [1, 3],
 | 
						|
            [2, 4],
 | 
						|
            [0, 3],
 | 
						|
            [1, 4],
 | 
						|
            # doc 4
 | 
						|
            [0, 1],
 | 
						|
            [1, 2],
 | 
						|
            [2, 3],
 | 
						|
            [3, 4],
 | 
						|
            [4, 5],
 | 
						|
            [0, 2],
 | 
						|
            [1, 3],
 | 
						|
            [2, 4],
 | 
						|
            [3, 5],
 | 
						|
            [0, 3],
 | 
						|
            [1, 4],
 | 
						|
            [2, 5],
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    # test some empty docs
 | 
						|
    ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
 | 
						|
    docs = [en_tokenizer(text) for text in ["", "a", ""]]
 | 
						|
    ngrams = ngram_suggester(docs)
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
 | 
						|
 | 
						|
    # test all empty docs
 | 
						|
    ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
 | 
						|
    docs = [en_tokenizer(text) for text in ["", "", ""]]
 | 
						|
    ngrams = ngram_suggester(docs)
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
 | 
						|
 | 
						|
 | 
						|
def test_ngram_sizes(en_tokenizer):
 | 
						|
    # test that the range suggester works well
 | 
						|
    size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
 | 
						|
    suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
 | 
						|
    range_suggester = suggester_factory(min_size=1, max_size=3)
 | 
						|
    docs = [
 | 
						|
        en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
 | 
						|
    ]
 | 
						|
    ngrams_1 = size_suggester(docs)
 | 
						|
    ngrams_2 = range_suggester(docs)
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams_1.lengths), [1, 3, 6, 9, 12])
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams_1.lengths), OPS.to_numpy(ngrams_2.lengths))
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams_1.data), OPS.to_numpy(ngrams_2.data))
 | 
						|
 | 
						|
    # one more variation
 | 
						|
    suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
 | 
						|
    range_suggester = suggester_factory(min_size=2, max_size=4)
 | 
						|
    ngrams_3 = range_suggester(docs)
 | 
						|
    assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    train_examples = make_examples(nlp)
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert spancat.model.get_dim("nO") == 2
 | 
						|
    assert set(spancat.labels) == {"LOC", "PERSON"}
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["spancat"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like London and Berlin"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
 | 
						|
    spans = doc.spans[SPAN_KEY]
 | 
						|
    assert len(spans) == 2
 | 
						|
    assert len(spans.attrs["scores"]) == 2
 | 
						|
    assert min(spans.attrs["scores"]) > 0.9
 | 
						|
    assert set([span.text for span in spans]) == {"London", "Berlin"}
 | 
						|
    assert set([span.label_ for span in spans]) == {"LOC"}
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        spans2 = doc2.spans[SPAN_KEY]
 | 
						|
        assert len(spans2) == 2
 | 
						|
        assert len(spans2.attrs["scores"]) == 2
 | 
						|
        assert min(spans2.attrs["scores"]) > 0.9
 | 
						|
        assert set([span.text for span in spans2]) == {"London", "Berlin"}
 | 
						|
        assert set([span.label_ for span in spans2]) == {"LOC"}
 | 
						|
 | 
						|
    # Test scoring
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert f"spans_{SPAN_KEY}_f" in scores
 | 
						|
    assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
 | 
						|
    assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
 | 
						|
    assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
 | 
						|
 | 
						|
    # also test that the spancat works for just a single entity in a sentence
 | 
						|
    doc = nlp("London")
 | 
						|
    assert len(doc.spans[spancat.key]) == 1
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO_overlapping():
 | 
						|
    # Test for overfitting on overlapping entities
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
 | 
						|
    train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert spancat.model.get_dim("nO") == 3
 | 
						|
    assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["spancat"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like London and Berlin"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    spans = doc.spans[SPAN_KEY]
 | 
						|
    assert len(spans) == 3
 | 
						|
    assert len(spans.attrs["scores"]) == 3
 | 
						|
    assert min(spans.attrs["scores"]) > 0.9
 | 
						|
    assert set([span.text for span in spans]) == {
 | 
						|
        "London",
 | 
						|
        "Berlin",
 | 
						|
        "London and Berlin",
 | 
						|
    }
 | 
						|
    assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        spans2 = doc2.spans[SPAN_KEY]
 | 
						|
        assert len(spans2) == 3
 | 
						|
        assert len(spans2.attrs["scores"]) == 3
 | 
						|
        assert min(spans2.attrs["scores"]) > 0.9
 | 
						|
        assert set([span.text for span in spans2]) == {
 | 
						|
            "London",
 | 
						|
            "Berlin",
 | 
						|
            "London and Berlin",
 | 
						|
        }
 | 
						|
        assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
 | 
						|
 | 
						|
 | 
						|
def test_zero_suggestions():
 | 
						|
    # Test with a suggester that can return 0 suggestions
 | 
						|
 | 
						|
    @registry.misc("test_mixed_zero_suggester")
 | 
						|
    def make_mixed_zero_suggester():
 | 
						|
        def mixed_zero_suggester(docs, *, ops=None):
 | 
						|
            if ops is None:
 | 
						|
                ops = get_current_ops()
 | 
						|
            spans = []
 | 
						|
            lengths = []
 | 
						|
            for doc in docs:
 | 
						|
                if len(doc) > 0 and len(doc) % 2 == 0:
 | 
						|
                    spans.append((0, 1))
 | 
						|
                    lengths.append(1)
 | 
						|
                else:
 | 
						|
                    lengths.append(0)
 | 
						|
            spans = ops.asarray2i(spans)
 | 
						|
            lengths_array = ops.asarray1i(lengths)
 | 
						|
            if len(spans) > 0:
 | 
						|
                output = Ragged(ops.xp.vstack(spans), lengths_array)
 | 
						|
            else:
 | 
						|
                output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
 | 
						|
            return output
 | 
						|
 | 
						|
        return mixed_zero_suggester
 | 
						|
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    spancat = nlp.add_pipe(
 | 
						|
        "spancat",
 | 
						|
        config={
 | 
						|
            "suggester": {"@misc": "test_mixed_zero_suggester"},
 | 
						|
            "spans_key": SPAN_KEY,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    train_examples = make_examples(nlp)
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert spancat.model.get_dim("nO") == 2
 | 
						|
    assert set(spancat.labels) == {"LOC", "PERSON"}
 | 
						|
 | 
						|
    nlp.update(train_examples, sgd=optimizer)
 | 
						|
    # empty doc
 | 
						|
    nlp("")
 | 
						|
    # single doc with zero suggestions
 | 
						|
    nlp("one")
 | 
						|
    # single doc with one suggestion
 | 
						|
    nlp("two two")
 | 
						|
    # batch with mixed zero/one suggestions
 | 
						|
    list(nlp.pipe(["one", "two two", "three three three", "", "four four four four"]))
 | 
						|
    # batch with no suggestions
 | 
						|
    list(nlp.pipe(["", "one", "three three three"]))
 | 
						|
 | 
						|
 | 
						|
def test_set_candidates():
 | 
						|
    nlp = Language()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    train_examples = make_examples(nlp)
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    texts = [
 | 
						|
        "Just a sentence.",
 | 
						|
        "I like London and Berlin",
 | 
						|
        "I like Berlin",
 | 
						|
        "I eat ham.",
 | 
						|
    ]
 | 
						|
 | 
						|
    docs = [nlp(text) for text in texts]
 | 
						|
    spancat.set_candidates(docs)
 | 
						|
 | 
						|
    assert len(docs) == len(texts)
 | 
						|
    assert type(docs[0].spans["candidates"]) == SpanGroup
 | 
						|
    assert len(docs[0].spans["candidates"]) == 9
 | 
						|
    assert docs[0].spans["candidates"][0].text == "Just"
 | 
						|
    assert docs[0].spans["candidates"][4].text == "Just a"
 | 
						|
 | 
						|
 | 
						|
def test_save_activations():
 | 
						|
    # Test if activations are correctly added to Doc when requested.
 | 
						|
    nlp = English()
 | 
						|
    spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | 
						|
    train_examples = make_examples(nlp)
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    nO = spancat.model.get_dim("nO")
 | 
						|
    assert nO == 2
 | 
						|
    assert set(spancat.labels) == {"LOC", "PERSON"}
 | 
						|
 | 
						|
    doc = nlp("This is a test.")
 | 
						|
    assert "spancat" not in doc.activations
 | 
						|
 | 
						|
    spancat.save_activations = True
 | 
						|
    doc = nlp("This is a test.")
 | 
						|
    assert set(doc.activations["spancat"].keys()) == {"indices", "scores"}
 | 
						|
    assert doc.activations["spancat"]["indices"].shape == (12, 2)
 | 
						|
    assert doc.activations["spancat"]["scores"].shape == (12, nO)
 |