mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
import numpy
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.matcher import Matcher
 | 
						|
from spacy.displacy import render
 | 
						|
from spacy.gold import iob_to_biluo
 | 
						|
from spacy.lang.it import Italian
 | 
						|
from spacy.lang.en import English
 | 
						|
 | 
						|
from ..util import add_vecs_to_vocab, get_doc
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_issue2070():
 | 
						|
    """Test that checks that a dot followed by a quote is handled
 | 
						|
    appropriately.
 | 
						|
    """
 | 
						|
    # Problem: The dot is now properly split off, but the prefix/suffix rules
 | 
						|
    # are not applied again afterwards. This means that the quote will still be
 | 
						|
    # attached to the remaining token.
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp('First sentence."A quoted sentence" he said ...')
 | 
						|
    assert len(doc) == 11
 | 
						|
 | 
						|
 | 
						|
def test_issue2179():
 | 
						|
    """Test that spurious 'extra_labels' aren't created when initializing NER."""
 | 
						|
    nlp = Italian()
 | 
						|
    ner = nlp.create_pipe("ner")
 | 
						|
    ner.add_label("CITIZENSHIP")
 | 
						|
    nlp.add_pipe(ner)
 | 
						|
    nlp.begin_training()
 | 
						|
    nlp2 = Italian()
 | 
						|
    nlp2.add_pipe(nlp2.create_pipe("ner"))
 | 
						|
    nlp2.from_bytes(nlp.to_bytes())
 | 
						|
    assert "extra_labels" not in nlp2.get_pipe("ner").cfg
 | 
						|
    assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
 | 
						|
 | 
						|
 | 
						|
def test_issue2203(en_vocab):
 | 
						|
    """Test that lemmas are set correctly in doc.from_array."""
 | 
						|
    words = ["I", "'ll", "survive"]
 | 
						|
    tags = ["PRP", "MD", "VB"]
 | 
						|
    lemmas = ["-PRON-", "will", "survive"]
 | 
						|
    tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | 
						|
    lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    # Work around lemma corrpution problem and set lemmas after tags
 | 
						|
    doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | 
						|
    doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64"))
 | 
						|
    assert [t.tag_ for t in doc] == tags
 | 
						|
    assert [t.lemma_ for t in doc] == lemmas
 | 
						|
    # We need to serialize both tag and lemma, since this is what causes the bug
 | 
						|
    doc_array = doc.to_array(["TAG", "LEMMA"])
 | 
						|
    new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array)
 | 
						|
    assert [t.tag_ for t in new_doc] == tags
 | 
						|
    assert [t.lemma_ for t in new_doc] == lemmas
 | 
						|
 | 
						|
 | 
						|
def test_issue2219(en_vocab):
 | 
						|
    vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])]
 | 
						|
    add_vecs_to_vocab(en_vocab, vectors)
 | 
						|
    [(word1, vec1), (word2, vec2)] = vectors
 | 
						|
    doc = Doc(en_vocab, words=[word1, word2])
 | 
						|
    assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
 | 
						|
 | 
						|
 | 
						|
def test_issue2361(de_tokenizer):
 | 
						|
    chars = ("<", ">", "&", """)
 | 
						|
    doc = de_tokenizer('< > & " ')
 | 
						|
    doc.is_parsed = True
 | 
						|
    doc.is_tagged = True
 | 
						|
    html = render(doc)
 | 
						|
    for char in chars:
 | 
						|
        assert char in html
 | 
						|
 | 
						|
 | 
						|
def test_issue2385():
 | 
						|
    """Test that IOB tags are correctly converted to BILUO tags."""
 | 
						|
    # fix bug in labels with a 'b' character
 | 
						|
    tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER")
 | 
						|
    assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"]
 | 
						|
    # maintain support for iob1 format
 | 
						|
    tags2 = ("I-ORG", "I-ORG", "B-ORG")
 | 
						|
    assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"]
 | 
						|
    # maintain support for iob2 format
 | 
						|
    tags3 = ("B-PERSON", "I-PERSON", "B-PERSON")
 | 
						|
    assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "tags",
 | 
						|
    [
 | 
						|
        ("B-ORG", "L-ORG"),
 | 
						|
        ("B-PERSON", "I-PERSON", "L-PERSON"),
 | 
						|
        ("U-BRAWLER", "U-BRAWLER"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_issue2385_biluo(tags):
 | 
						|
    """Test that BILUO-compatible tags aren't modified."""
 | 
						|
    assert iob_to_biluo(tags) == list(tags)
 | 
						|
 | 
						|
 | 
						|
def test_issue2396(en_vocab):
 | 
						|
    words = ["She", "created", "a", "test", "for", "spacy"]
 | 
						|
    heads = [1, 0, 1, -2, -1, -1]
 | 
						|
    matrix = numpy.array(
 | 
						|
        [
 | 
						|
            [0, 1, 1, 1, 1, 1],
 | 
						|
            [1, 1, 1, 1, 1, 1],
 | 
						|
            [1, 1, 2, 3, 3, 3],
 | 
						|
            [1, 1, 3, 3, 3, 3],
 | 
						|
            [1, 1, 3, 3, 4, 4],
 | 
						|
            [1, 1, 3, 3, 4, 5],
 | 
						|
        ],
 | 
						|
        dtype=numpy.int32,
 | 
						|
    )
 | 
						|
    doc = get_doc(en_vocab, words=words, heads=heads)
 | 
						|
    span = doc[:]
 | 
						|
    assert (doc.get_lca_matrix() == matrix).all()
 | 
						|
    assert (span.get_lca_matrix() == matrix).all()
 | 
						|
 | 
						|
 | 
						|
def test_issue2464(en_vocab):
 | 
						|
    """Test problem with successive ?. This is the same bug, so putting it here."""
 | 
						|
    matcher = Matcher(en_vocab)
 | 
						|
    doc = Doc(en_vocab, words=["a", "b"])
 | 
						|
    matcher.add("4", None, [{"OP": "?"}, {"OP": "?"}])
 | 
						|
    matches = matcher(doc)
 | 
						|
    assert len(matches) == 3
 | 
						|
 | 
						|
 | 
						|
def test_issue2482():
 | 
						|
    """Test we can serialize and deserialize a blank NER or parser model."""
 | 
						|
    nlp = Italian()
 | 
						|
    nlp.add_pipe(nlp.create_pipe("ner"))
 | 
						|
    b = nlp.to_bytes()
 | 
						|
    Italian().from_bytes(b)
 |