mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			153 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Semantic entailment/similarity with decomposable attention (using spaCy and Keras)
 | 
						|
# Practical state-of-the-art textual entailment with spaCy and Keras
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from keras import layers, Model, models, optimizers
 | 
						|
from keras import backend as K
 | 
						|
 | 
						|
 | 
						|
def build_model(vectors, shape, settings):
 | 
						|
    max_length, nr_hidden, nr_class = shape
 | 
						|
 | 
						|
    input1 = layers.Input(shape=(max_length,), dtype="int32", name="words1")
 | 
						|
    input2 = layers.Input(shape=(max_length,), dtype="int32", name="words2")
 | 
						|
 | 
						|
    # embeddings (projected)
 | 
						|
    embed = create_embedding(vectors, max_length, nr_hidden)
 | 
						|
 | 
						|
    a = embed(input1)
 | 
						|
    b = embed(input2)
 | 
						|
 | 
						|
    # step 1: attend
 | 
						|
    F = create_feedforward(nr_hidden)
 | 
						|
    att_weights = layers.dot([F(a), F(b)], axes=-1)
 | 
						|
 | 
						|
    G = create_feedforward(nr_hidden)
 | 
						|
 | 
						|
    if settings["entail_dir"] == "both":
 | 
						|
        norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
 | 
						|
        norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
 | 
						|
        alpha = layers.dot([norm_weights_a, a], axes=1)
 | 
						|
        beta = layers.dot([norm_weights_b, b], axes=1)
 | 
						|
 | 
						|
        # step 2: compare
 | 
						|
        comp1 = layers.concatenate([a, beta])
 | 
						|
        comp2 = layers.concatenate([b, alpha])
 | 
						|
        v1 = layers.TimeDistributed(G)(comp1)
 | 
						|
        v2 = layers.TimeDistributed(G)(comp2)
 | 
						|
 | 
						|
        # step 3: aggregate
 | 
						|
        v1_sum = layers.Lambda(sum_word)(v1)
 | 
						|
        v2_sum = layers.Lambda(sum_word)(v2)
 | 
						|
        concat = layers.concatenate([v1_sum, v2_sum])
 | 
						|
 | 
						|
    elif settings["entail_dir"] == "left":
 | 
						|
        norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
 | 
						|
        alpha = layers.dot([norm_weights_a, a], axes=1)
 | 
						|
        comp2 = layers.concatenate([b, alpha])
 | 
						|
        v2 = layers.TimeDistributed(G)(comp2)
 | 
						|
        v2_sum = layers.Lambda(sum_word)(v2)
 | 
						|
        concat = v2_sum
 | 
						|
 | 
						|
    else:
 | 
						|
        norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
 | 
						|
        beta = layers.dot([norm_weights_b, b], axes=1)
 | 
						|
        comp1 = layers.concatenate([a, beta])
 | 
						|
        v1 = layers.TimeDistributed(G)(comp1)
 | 
						|
        v1_sum = layers.Lambda(sum_word)(v1)
 | 
						|
        concat = v1_sum
 | 
						|
 | 
						|
    H = create_feedforward(nr_hidden)
 | 
						|
    out = H(concat)
 | 
						|
    out = layers.Dense(nr_class, activation="softmax")(out)
 | 
						|
 | 
						|
    model = Model([input1, input2], out)
 | 
						|
 | 
						|
    model.compile(
 | 
						|
        optimizer=optimizers.Adam(lr=settings["lr"]),
 | 
						|
        loss="categorical_crossentropy",
 | 
						|
        metrics=["accuracy"],
 | 
						|
    )
 | 
						|
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def create_embedding(vectors, max_length, projected_dim):
 | 
						|
    return models.Sequential(
 | 
						|
        [
 | 
						|
            layers.Embedding(
 | 
						|
                vectors.shape[0],
 | 
						|
                vectors.shape[1],
 | 
						|
                input_length=max_length,
 | 
						|
                weights=[vectors],
 | 
						|
                trainable=False,
 | 
						|
            ),
 | 
						|
            layers.TimeDistributed(
 | 
						|
                layers.Dense(projected_dim, activation=None, use_bias=False)
 | 
						|
            ),
 | 
						|
        ]
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def create_feedforward(num_units=200, activation="relu", dropout_rate=0.2):
 | 
						|
    return models.Sequential(
 | 
						|
        [
 | 
						|
            layers.Dense(num_units, activation=activation),
 | 
						|
            layers.Dropout(dropout_rate),
 | 
						|
            layers.Dense(num_units, activation=activation),
 | 
						|
            layers.Dropout(dropout_rate),
 | 
						|
        ]
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def normalizer(axis):
 | 
						|
    def _normalize(att_weights):
 | 
						|
        exp_weights = K.exp(att_weights)
 | 
						|
        sum_weights = K.sum(exp_weights, axis=axis, keepdims=True)
 | 
						|
        return exp_weights / sum_weights
 | 
						|
 | 
						|
    return _normalize
 | 
						|
 | 
						|
 | 
						|
def sum_word(x):
 | 
						|
    return K.sum(x, axis=1)
 | 
						|
 | 
						|
 | 
						|
def test_build_model():
 | 
						|
    vectors = np.ndarray((100, 8), dtype="float32")
 | 
						|
    shape = (10, 16, 3)
 | 
						|
    settings = {"lr": 0.001, "dropout": 0.2, "gru_encode": True, "entail_dir": "both"}
 | 
						|
    model = build_model(vectors, shape, settings)
 | 
						|
 | 
						|
 | 
						|
def test_fit_model():
 | 
						|
    def _generate_X(nr_example, length, nr_vector):
 | 
						|
        X1 = np.ndarray((nr_example, length), dtype="int32")
 | 
						|
        X1 *= X1 < nr_vector
 | 
						|
        X1 *= 0 <= X1
 | 
						|
        X2 = np.ndarray((nr_example, length), dtype="int32")
 | 
						|
        X2 *= X2 < nr_vector
 | 
						|
        X2 *= 0 <= X2
 | 
						|
        return [X1, X2]
 | 
						|
 | 
						|
    def _generate_Y(nr_example, nr_class):
 | 
						|
        ys = np.zeros((nr_example, nr_class), dtype="int32")
 | 
						|
        for i in range(nr_example):
 | 
						|
            ys[i, i % nr_class] = 1
 | 
						|
        return ys
 | 
						|
 | 
						|
    vectors = np.ndarray((100, 8), dtype="float32")
 | 
						|
    shape = (10, 16, 3)
 | 
						|
    settings = {"lr": 0.001, "dropout": 0.2, "gru_encode": True, "entail_dir": "both"}
 | 
						|
    model = build_model(vectors, shape, settings)
 | 
						|
 | 
						|
    train_X = _generate_X(20, shape[0], vectors.shape[0])
 | 
						|
    train_Y = _generate_Y(20, shape[2])
 | 
						|
    dev_X = _generate_X(15, shape[0], vectors.shape[0])
 | 
						|
    dev_Y = _generate_Y(15, shape[2])
 | 
						|
 | 
						|
    model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), epochs=5, batch_size=4)
 | 
						|
 | 
						|
 | 
						|
__all__ = [build_model]
 |