mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
83ac227bd3
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting Support semi-supervised learning in spacy train One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing. Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning. Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective. Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage: python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze Implement rehearsal methods for pipeline components The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows: Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model. Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details. Implement rehearsal updates for tagger Implement rehearsal updates for text categoriz
1313 lines
49 KiB
Cython
1313 lines
49 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy
|
|
cimport numpy as np
|
|
from collections import OrderedDict, defaultdict
|
|
import srsly
|
|
|
|
from thinc.api import chain
|
|
from thinc.v2v import Affine, Maxout, Softmax
|
|
from thinc.misc import LayerNorm
|
|
from thinc.t2v import Pooling, max_pool, mean_pool
|
|
from thinc.neural.util import to_categorical, copy_array
|
|
from thinc.neural._classes.difference import Siamese, CauchySimilarity
|
|
|
|
from .tokens.doc cimport Doc
|
|
from .syntax.nn_parser cimport Parser
|
|
from .syntax import nonproj
|
|
from .syntax.ner cimport BiluoPushDown
|
|
from .syntax.arc_eager cimport ArcEager
|
|
from .morphology cimport Morphology
|
|
from .vocab cimport Vocab
|
|
from .syntax import nonproj
|
|
from .matcher import Matcher
|
|
|
|
from .matcher import Matcher, PhraseMatcher
|
|
from .tokens.span import Span
|
|
from .attrs import POS, ID
|
|
from .parts_of_speech import X
|
|
from ._ml import Tok2Vec, build_text_classifier, build_tagger_model
|
|
from ._ml import build_simple_cnn_text_classifier
|
|
from ._ml import link_vectors_to_models, zero_init, flatten
|
|
from ._ml import create_default_optimizer
|
|
from ._ml import masked_language_model
|
|
from .errors import Errors, TempErrors
|
|
from .compat import basestring_
|
|
from . import util
|
|
|
|
|
|
class SentenceSegmenter(object):
|
|
"""A simple spaCy hook, to allow custom sentence boundary detection logic
|
|
(that doesn't require the dependency parse). To change the sentence
|
|
boundary detection strategy, pass a generator function `strategy` on
|
|
initialization, or assign a new strategy to the .strategy attribute.
|
|
Sentence detection strategies should be generators that take `Doc` objects
|
|
and yield `Span` objects for each sentence.
|
|
"""
|
|
name = 'sentencizer'
|
|
|
|
def __init__(self, vocab, strategy=None):
|
|
self.vocab = vocab
|
|
if strategy is None or strategy == 'on_punct':
|
|
strategy = self.split_on_punct
|
|
self.strategy = strategy
|
|
|
|
def __call__(self, doc):
|
|
doc.user_hooks['sents'] = self.strategy
|
|
return doc
|
|
|
|
@staticmethod
|
|
def split_on_punct(doc):
|
|
start = 0
|
|
seen_period = False
|
|
for i, word in enumerate(doc):
|
|
if seen_period and not word.is_punct:
|
|
yield doc[start:word.i]
|
|
start = word.i
|
|
seen_period = False
|
|
elif word.text in ['.', '!', '?']:
|
|
seen_period = True
|
|
if start < len(doc):
|
|
yield doc[start:len(doc)]
|
|
|
|
|
|
def merge_noun_chunks(doc):
|
|
"""Merge noun chunks into a single token.
|
|
|
|
doc (Doc): The Doc object.
|
|
RETURNS (Doc): The Doc object with merged noun chunks.
|
|
"""
|
|
if not doc.is_parsed:
|
|
return doc
|
|
spans = [(np.start_char, np.end_char, np.root.tag, np.root.dep)
|
|
for np in doc.noun_chunks]
|
|
for start, end, tag, dep in spans:
|
|
doc.merge(start, end, tag=tag, dep=dep)
|
|
return doc
|
|
|
|
|
|
def merge_entities(doc):
|
|
"""Merge entities into a single token.
|
|
|
|
doc (Doc): The Doc object.
|
|
RETURNS (Doc): The Doc object with merged noun entities.
|
|
"""
|
|
spans = [(e.start_char, e.end_char, e.root.tag, e.root.dep, e.label)
|
|
for e in doc.ents]
|
|
for start, end, tag, dep, ent_type in spans:
|
|
doc.merge(start, end, tag=tag, dep=dep, ent_type=ent_type)
|
|
return doc
|
|
|
|
|
|
def merge_subtokens(doc, label='subtok'):
|
|
merger = Matcher(doc.vocab)
|
|
merger.add('SUBTOK', None, [{'DEP': label, 'op': '+'}])
|
|
matches = merger(doc)
|
|
spans = [doc[start:end+1] for _, start, end in matches]
|
|
offsets = [(span.start_char, span.end_char) for span in spans]
|
|
for start_char, end_char in offsets:
|
|
doc.merge(start_char, end_char)
|
|
return doc
|
|
|
|
|
|
class EntityRuler(object):
|
|
name = 'entity_ruler'
|
|
|
|
def __init__(self, nlp, **cfg):
|
|
"""Initialise the entitiy ruler. If patterns are supplied here, they
|
|
need to be a list of dictionaries with a `"label"` and `"pattern"`
|
|
key. A pattern can either be a token pattern (list) or a phrase pattern
|
|
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
|
|
|
|
nlp (Language): The shared nlp object to pass the vocab to the matchers
|
|
and process phrase patterns.
|
|
patterns (iterable): Optional patterns to load in.
|
|
overwrite_ents (bool): If existing entities are present, e.g. entities
|
|
added by the model, overwrite them by matches if necessary.
|
|
**cfg: Other config parameters. If pipeline component is loaded as part
|
|
of a model pipeline, this will include all keyword arguments passed
|
|
to `spacy.load`.
|
|
RETURNS (EntityRuler): The newly constructed object.
|
|
"""
|
|
self.nlp = nlp
|
|
self.overwrite = cfg.get('overwrite_ents', False)
|
|
self.token_patterns = defaultdict(list)
|
|
self.phrase_patterns = defaultdict(list)
|
|
self.matcher = Matcher(nlp.vocab)
|
|
self.phrase_matcher = PhraseMatcher(nlp.vocab)
|
|
patterns = cfg.get('patterns')
|
|
if patterns is not None:
|
|
self.add_patterns(patterns)
|
|
|
|
def __len__(self):
|
|
"""The number of all patterns added to the entity ruler."""
|
|
n_token_patterns = sum(len(p) for p in self.token_patterns.values())
|
|
n_phrase_patterns = sum(len(p) for p in self.phrase_patterns.values())
|
|
return n_token_patterns + n_phrase_patterns
|
|
|
|
def __contains__(self, label):
|
|
"""Whether a label is present in the patterns."""
|
|
return label in self.token_patterns or label in self.phrase_patterns
|
|
|
|
def __call__(self, doc):
|
|
"""Find matches in document and add them as entities.
|
|
|
|
doc (Doc): The Doc object in the pipeline.
|
|
RETURNS (Doc): The Doc with added entities, if available.
|
|
"""
|
|
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
|
|
matches = set([(m_id, start, end) for m_id, start, end in matches
|
|
if start != end])
|
|
get_sort_key = lambda m: (m[2] - m[1], m[1])
|
|
matches = sorted(matches, key=get_sort_key, reverse=True)
|
|
entities = list(doc.ents)
|
|
new_entities = []
|
|
seen_tokens = set()
|
|
for match_id, start, end in matches:
|
|
if any(t.ent_type for t in doc[start:end]) and not self.overwrite:
|
|
continue
|
|
# check for end - 1 here because boundaries are inclusive
|
|
if start not in seen_tokens and end - 1 not in seen_tokens:
|
|
new_entities.append(Span(doc, start, end, label=match_id))
|
|
entities = [e for e in entities
|
|
if not (e.start < end and e.end > start)]
|
|
seen_tokens.update(range(start, end))
|
|
doc.ents = entities + new_entities
|
|
return doc
|
|
|
|
@property
|
|
def labels(self):
|
|
"""All labels present in the match patterns.
|
|
|
|
RETURNS (set): The string labels.
|
|
"""
|
|
all_labels = set(self.token_patterns.keys())
|
|
all_labels.update(self.phrase_patterns.keys())
|
|
return all_labels
|
|
|
|
@property
|
|
def patterns(self):
|
|
"""Get all patterns that were added to the entity ruler.
|
|
|
|
RETURNS (list): The original patterns, one dictionary per pattern.
|
|
"""
|
|
all_patterns = []
|
|
for label, patterns in self.token_patterns.items():
|
|
for pattern in patterns:
|
|
all_patterns.append({'label': label, 'pattern': pattern})
|
|
for label, patterns in self.phrase_patterns.items():
|
|
for pattern in patterns:
|
|
all_patterns.append({'label': label, 'pattern': pattern.text})
|
|
return all_patterns
|
|
|
|
def add_patterns(self, patterns):
|
|
"""Add patterns to the entitiy ruler. A pattern can either be a token
|
|
pattern (list of dicts) or a phrase pattern (string). For example:
|
|
{'label': 'ORG', 'pattern': 'Apple'}
|
|
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
|
|
|
|
patterns (list): The patterns to add.
|
|
"""
|
|
for entry in patterns:
|
|
label = entry['label']
|
|
pattern = entry['pattern']
|
|
if isinstance(pattern, basestring_):
|
|
self.phrase_patterns[label].append(self.nlp(pattern))
|
|
elif isinstance(pattern, list):
|
|
self.token_patterns[label].append(pattern)
|
|
else:
|
|
raise ValueError(Errors.E097.format(pattern=pattern))
|
|
for label, patterns in self.token_patterns.items():
|
|
self.matcher.add(label, None, *patterns)
|
|
for label, patterns in self.phrase_patterns.items():
|
|
self.phrase_matcher.add(label, None, *patterns)
|
|
|
|
def from_bytes(self, patterns_bytes, **kwargs):
|
|
"""Load the entity ruler from a bytestring.
|
|
|
|
patterns_bytes (bytes): The bytestring to load.
|
|
**kwargs: Other config paramters, mostly for consistency.
|
|
RETURNS (EntityRuler): The loaded entity ruler.
|
|
"""
|
|
patterns = srsly.msgpack_loads(patterns_bytes)
|
|
self.add_patterns(patterns)
|
|
return self
|
|
|
|
def to_bytes(self, **kwargs):
|
|
"""Serialize the entity ruler patterns to a bytestring.
|
|
|
|
RETURNS (bytes): The serialized patterns.
|
|
"""
|
|
return srsly.msgpack_dumps(self.patterns)
|
|
|
|
def from_disk(self, path, **kwargs):
|
|
"""Load the entity ruler from a file. Expects a file containing
|
|
newline-delimited JSON (JSONL) with one entry per line.
|
|
|
|
path (unicode / Path): The JSONL file to load.
|
|
**kwargs: Other config paramters, mostly for consistency.
|
|
RETURNS (EntityRuler): The loaded entity ruler.
|
|
"""
|
|
path = util.ensure_path(path)
|
|
path = path.with_suffix('.jsonl')
|
|
patterns = srsly.read_jsonl(path)
|
|
self.add_patterns(patterns)
|
|
return self
|
|
|
|
def to_disk(self, path, **kwargs):
|
|
"""Save the entity ruler patterns to a directory. The patterns will be
|
|
saved as newline-delimited JSON (JSONL).
|
|
|
|
path (unicode / Path): The JSONL file to load.
|
|
**kwargs: Other config paramters, mostly for consistency.
|
|
RETURNS (EntityRuler): The loaded entity ruler.
|
|
"""
|
|
path = util.ensure_path(path)
|
|
path = path.with_suffix('.jsonl')
|
|
srsly.write_jsonl(path, self.patterns)
|
|
|
|
|
|
class Pipe(object):
|
|
"""This class is not instantiated directly. Components inherit from it, and
|
|
it defines the interface that components should follow to function as
|
|
components in a spaCy analysis pipeline.
|
|
"""
|
|
name = None
|
|
|
|
@classmethod
|
|
def Model(cls, *shape, **kwargs):
|
|
"""Initialize a model for the pipe."""
|
|
raise NotImplementedError
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Create a new pipe instance."""
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, doc):
|
|
"""Apply the pipe to one document. The document is
|
|
modified in-place, and returned.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
scores, tensors = self.predict([doc])
|
|
self.set_annotations([doc], scores, tensors=tensors)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
"""Apply the pipe to a stream of documents.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
scores, tensors = self.predict(docs)
|
|
self.set_annotations(docs, scores, tensor=tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Apply the pipeline's model to a batch of docs, without
|
|
modifying them.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def set_annotations(self, docs, scores, tensors=None):
|
|
"""Modify a batch of documents, using pre-computed scores."""
|
|
raise NotImplementedError
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model.
|
|
|
|
Delegates to predict() and get_loss().
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def rehearse(self, docs, sgd=None, losses=None, **config):
|
|
pass
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
"""Find the loss and gradient of loss for the batch of
|
|
documents and their predicted scores."""
|
|
raise NotImplementedError
|
|
|
|
def add_label(self, label):
|
|
"""Add an output label, to be predicted by the model.
|
|
|
|
It's possible to extend pre-trained models with new labels,
|
|
but care should be taken to avoid the "catastrophic forgetting"
|
|
problem.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_optimizer(self):
|
|
return create_default_optimizer(self.model.ops,
|
|
**self.cfg.get('optimizer', {}))
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
|
|
**kwargs):
|
|
"""Initialize the pipe for training, using data exampes if available.
|
|
If no model has been initialized yet, the model is added."""
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def use_params(self, params):
|
|
"""Modify the pipe's model, to use the given parameter values."""
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, **exclude):
|
|
"""Serialize the pipe to a bytestring."""
|
|
serialize = OrderedDict()
|
|
serialize['cfg'] = lambda: srsly.json_dumps(self.cfg)
|
|
if self.model in (True, False, None):
|
|
serialize['model'] = lambda: self.model
|
|
else:
|
|
serialize['model'] = self.model.to_bytes
|
|
serialize['vocab'] = self.vocab.to_bytes
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, **exclude):
|
|
"""Load the pipe from a bytestring."""
|
|
def load_model(b):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
|
|
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.model.from_bytes(b)
|
|
|
|
deserialize = OrderedDict((
|
|
('cfg', lambda b: self.cfg.update(srsly.json_loads(b))),
|
|
('vocab', lambda b: self.vocab.from_bytes(b)),
|
|
('model', load_model),
|
|
))
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, **exclude):
|
|
"""Serialize the pipe to disk."""
|
|
serialize = OrderedDict()
|
|
serialize['cfg'] = lambda p: srsly.write_json(p, self.cfg)
|
|
serialize['vocab'] = lambda p: self.vocab.to_disk(p)
|
|
if self.model not in (None, True, False):
|
|
serialize['model'] = lambda p: p.open('wb').write(self.model.to_bytes())
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, **exclude):
|
|
"""Load the pipe from disk."""
|
|
def load_model(p):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
|
|
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.model.from_bytes(p.open('rb').read())
|
|
|
|
deserialize = OrderedDict((
|
|
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
|
|
('vocab', lambda p: self.vocab.from_disk(p)),
|
|
('model', load_model),
|
|
))
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
def _load_cfg(path):
|
|
if path.exists():
|
|
return srsly.read_json(path)
|
|
else:
|
|
return {}
|
|
|
|
|
|
class Tensorizer(Pipe):
|
|
"""Pre-train position-sensitive vectors for tokens."""
|
|
name = 'tensorizer'
|
|
|
|
@classmethod
|
|
def Model(cls, output_size=300, **cfg):
|
|
"""Create a new statistical model for the class.
|
|
|
|
width (int): Output size of the model.
|
|
embed_size (int): Number of vectors in the embedding table.
|
|
**cfg: Config parameters.
|
|
RETURNS (Model): A `thinc.neural.Model` or similar instance.
|
|
"""
|
|
input_size = util.env_opt('token_vector_width', cfg.get('input_size', 96))
|
|
return zero_init(Affine(output_size, input_size, drop_factor=0.0))
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Construct a new statistical model. Weights are not allocated on
|
|
initialisation.
|
|
|
|
vocab (Vocab): A `Vocab` instance. The model must share the same
|
|
`Vocab` instance with the `Doc` objects it will process.
|
|
model (Model): A `Model` instance or `True` allocate one later.
|
|
**cfg: Config parameters.
|
|
|
|
EXAMPLE:
|
|
>>> from spacy.pipeline import TokenVectorEncoder
|
|
>>> tok2vec = TokenVectorEncoder(nlp.vocab)
|
|
>>> tok2vec.model = tok2vec.Model(128, 5000)
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.input_models = []
|
|
self.cfg = dict(cfg)
|
|
self.cfg.setdefault('cnn_maxout_pieces', 3)
|
|
|
|
def __call__(self, doc):
|
|
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
|
model. Vectors are set to the `Doc.tensor` attribute.
|
|
|
|
docs (Doc or iterable): One or more documents to add vectors to.
|
|
RETURNS (dict or None): Intermediate computations.
|
|
"""
|
|
tokvecses = self.predict([doc])
|
|
self.set_annotations([doc], tokvecses)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
"""Process `Doc` objects as a stream.
|
|
|
|
stream (iterator): A sequence of `Doc` objects to process.
|
|
batch_size (int): Number of `Doc` objects to group.
|
|
n_threads (int): Number of threads.
|
|
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
|
"""
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
tensors = self.predict(docs)
|
|
self.set_annotations(docs, tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Return a single tensor for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
RETURNS (object): Vector representations for each token in the docs.
|
|
"""
|
|
inputs = self.model.ops.flatten([doc.tensor for doc in docs])
|
|
outputs = self.model(inputs)
|
|
return self.model.ops.unflatten(outputs, [len(d) for d in docs])
|
|
|
|
def set_annotations(self, docs, tensors):
|
|
"""Set the tensor attribute for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
tensors (object): Vector representation for each token in the docs.
|
|
"""
|
|
for doc, tensor in zip(docs, tensors):
|
|
if tensor.shape[0] != len(doc):
|
|
raise ValueError(Errors.E076.format(rows=tensor.shape[0], words=len(doc)))
|
|
doc.tensor = tensor
|
|
|
|
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
|
|
"""Update the model.
|
|
|
|
docs (iterable): A batch of `Doc` objects.
|
|
golds (iterable): A batch of `GoldParse` objects.
|
|
drop (float): The droput rate.
|
|
sgd (callable): An optimizer.
|
|
RETURNS (dict): Results from the update.
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
inputs = []
|
|
bp_inputs = []
|
|
for tok2vec in self.input_models:
|
|
tensor, bp_tensor = tok2vec.begin_update(docs, drop=drop)
|
|
inputs.append(tensor)
|
|
bp_inputs.append(bp_tensor)
|
|
inputs = self.model.ops.xp.hstack(inputs)
|
|
scores, bp_scores = self.model.begin_update(inputs, drop=drop)
|
|
loss, d_scores = self.get_loss(docs, golds, scores)
|
|
d_inputs = bp_scores(d_scores, sgd=sgd)
|
|
d_inputs = self.model.ops.xp.split(d_inputs, len(self.input_models), axis=1)
|
|
for d_input, bp_input in zip(d_inputs, bp_inputs):
|
|
bp_input(d_input, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.)
|
|
losses[self.name] += loss
|
|
return loss
|
|
|
|
def get_loss(self, docs, golds, prediction):
|
|
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = self.vocab.vectors.data[ids]
|
|
d_scores = (prediction - target) / prediction.shape[0]
|
|
loss = (d_scores**2).sum()
|
|
return loss, d_scores
|
|
|
|
def begin_training(self, gold_tuples=lambda: [], pipeline=None, sgd=None,
|
|
**kwargs):
|
|
"""Allocate models, pre-process training data and acquire an
|
|
optimizer.
|
|
|
|
gold_tuples (iterable): Gold-standard training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
if pipeline is not None:
|
|
for name, model in pipeline:
|
|
if getattr(model, 'tok2vec', None):
|
|
self.input_models.append(model.tok2vec)
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
|
|
class Tagger(Pipe):
|
|
name = 'tagger'
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self._rehearsal_model = None
|
|
self.cfg = OrderedDict(sorted(cfg.items()))
|
|
self.cfg.setdefault('cnn_maxout_pieces', 2)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.vocab.morphology.tag_names
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
if self.model in (None, True, False):
|
|
return None
|
|
else:
|
|
return chain(self.model.tok2vec, flatten)
|
|
|
|
def __call__(self, doc):
|
|
tags, tokvecs = self.predict([doc])
|
|
self.set_annotations([doc], tags, tensors=tokvecs)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
tag_ids, tokvecs = self.predict(docs)
|
|
self.set_annotations(docs, tag_ids, tensors=tokvecs)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle case where there are no tokens in any docs.
|
|
n_labels = len(self.labels)
|
|
guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
|
|
tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
|
|
return guesses, tokvecs
|
|
tokvecs = self.model.tok2vec(docs)
|
|
scores = self.model.softmax(tokvecs)
|
|
guesses = []
|
|
for doc_scores in scores:
|
|
doc_guesses = doc_scores.argmax(axis=1)
|
|
if not isinstance(doc_guesses, numpy.ndarray):
|
|
doc_guesses = doc_guesses.get()
|
|
guesses.append(doc_guesses)
|
|
return guesses, tokvecs
|
|
|
|
def set_annotations(self, docs, batch_tag_ids, tensors=None):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef int idx = 0
|
|
cdef Vocab vocab = self.vocab
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, 'get'):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
# Don't clobber preset POS tags
|
|
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
|
|
# Don't clobber preset lemmas
|
|
lemma = doc.c[j].lemma
|
|
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
|
if lemma != 0 and lemma != doc.c[j].lex.orth:
|
|
doc.c[j].lemma = lemma
|
|
idx += 1
|
|
if tensors is not None and len(tensors):
|
|
if isinstance(doc.tensor, numpy.ndarray) \
|
|
and not isinstance(tensors[i], numpy.ndarray):
|
|
doc.extend_tensor(tensors[i].get())
|
|
else:
|
|
doc.extend_tensor(tensors[i])
|
|
doc.is_tagged = True
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
|
if losses is not None and self.name not in losses:
|
|
losses[self.name] = 0.
|
|
|
|
tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop)
|
|
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
|
bp_tag_scores(d_tag_scores, sgd=sgd)
|
|
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
"""Perform a 'rehearsal' update, where we try to match the output of
|
|
an initial model.
|
|
"""
|
|
if self._rehearsal_model is None:
|
|
return
|
|
guesses, backprop = self.model.begin_update(docs, drop=drop)
|
|
target = self._rehearsal_model(docs)
|
|
gradient = guesses - target
|
|
backprop(gradient, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += (gradient**2).sum()
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
scores = self.model.ops.flatten(scores)
|
|
tag_index = {tag: i for i, tag in enumerate(self.labels)}
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype='i')
|
|
guesses = scores.argmax(axis=1)
|
|
known_labels = numpy.ones((scores.shape[0], 1), dtype='f')
|
|
for gold in golds:
|
|
for tag in gold.tags:
|
|
if tag is None:
|
|
correct[idx] = guesses[idx]
|
|
elif tag in tag_index:
|
|
correct[idx] = tag_index[tag]
|
|
else:
|
|
correct[idx] = 0
|
|
known_labels[idx] = 0.
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype='i')
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
d_scores *= self.model.ops.asarray(known_labels)
|
|
loss = (d_scores**2).sum()
|
|
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
|
return float(loss), d_scores
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
|
|
**kwargs):
|
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
|
new_tag_map = OrderedDict()
|
|
for raw_text, annots_brackets in get_gold_tuples():
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for tag in tags:
|
|
if tag in orig_tag_map:
|
|
new_tag_map[tag] = orig_tag_map[tag]
|
|
else:
|
|
new_tag_map[tag] = {POS: X}
|
|
cdef Vocab vocab = self.vocab
|
|
if new_tag_map:
|
|
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
|
vocab.morphology.lemmatizer,
|
|
exc=vocab.morphology.exc)
|
|
self.cfg['pretrained_vectors'] = kwargs.get('pretrained_vectors')
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, **cfg):
|
|
if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'):
|
|
raise ValueError(TempErrors.T008)
|
|
return build_tagger_model(n_tags, **cfg)
|
|
|
|
def add_label(self, label, values=None):
|
|
if label in self.labels:
|
|
return 0
|
|
if self.model not in (True, False, None):
|
|
# Here's how the model resizing will work, once the
|
|
# neuron-to-tag mapping is no longer controlled by
|
|
# the Morphology class, which sorts the tag names.
|
|
# The sorting makes adding labels difficult.
|
|
# smaller = self.model._layers[-1]
|
|
# larger = Softmax(len(self.labels)+1, smaller.nI)
|
|
# copy_array(larger.W[:smaller.nO], smaller.W)
|
|
# copy_array(larger.b[:smaller.nO], smaller.b)
|
|
# self.model._layers[-1] = larger
|
|
raise ValueError(TempErrors.T003)
|
|
tag_map = dict(self.vocab.morphology.tag_map)
|
|
if values is None:
|
|
values = {POS: "X"}
|
|
tag_map[label] = values
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
return 1
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, **exclude):
|
|
serialize = OrderedDict()
|
|
if self.model in (None, True, False):
|
|
serialize['model'] = lambda: self.model
|
|
else:
|
|
serialize['model'] = self.model.to_bytes
|
|
serialize['vocab'] = self.vocab.to_bytes
|
|
serialize['cfg'] = lambda: srsly.json_dumps(self.cfg)
|
|
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
|
|
serialize['tag_map'] = lambda: srsly.msgpack_dumps(tag_map)
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, **exclude):
|
|
def load_model(b):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
|
|
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
|
|
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt(
|
|
'token_vector_width',
|
|
self.cfg.get('token_vector_width', 96))
|
|
self.model = self.Model(self.vocab.morphology.n_tags,
|
|
**self.cfg)
|
|
self.model.from_bytes(b)
|
|
|
|
def load_tag_map(b):
|
|
tag_map = srsly.msgpack_loads(b)
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
('vocab', lambda b: self.vocab.from_bytes(b)),
|
|
('tag_map', load_tag_map),
|
|
('cfg', lambda b: self.cfg.update(srsly.json_loads(b))),
|
|
('model', lambda b: load_model(b)),
|
|
))
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, **exclude):
|
|
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
|
|
serialize = OrderedDict((
|
|
('vocab', lambda p: self.vocab.to_disk(p)),
|
|
('tag_map', lambda p: srsly.write_msgpack(p, tag_map)),
|
|
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
|
|
('cfg', lambda p: srsly.write_json(p, self.cfg))
|
|
))
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, **exclude):
|
|
def load_model(p):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
|
|
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
|
with p.open('rb') as file_:
|
|
self.model.from_bytes(file_.read())
|
|
|
|
def load_tag_map(p):
|
|
tag_map = srsly.read_msgpack(p)
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
|
|
('vocab', lambda p: self.vocab.from_disk(p)),
|
|
('tag_map', load_tag_map),
|
|
('model', load_model),
|
|
))
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
class MultitaskObjective(Tagger):
|
|
"""Experimental: Assist training of a parser or tagger, by training a
|
|
side-objective.
|
|
"""
|
|
name = 'nn_labeller'
|
|
|
|
def __init__(self, vocab, model=True, target='dep_tag_offset', **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
if target == 'dep':
|
|
self.make_label = self.make_dep
|
|
elif target == 'tag':
|
|
self.make_label = self.make_tag
|
|
elif target == 'ent':
|
|
self.make_label = self.make_ent
|
|
elif target == 'dep_tag_offset':
|
|
self.make_label = self.make_dep_tag_offset
|
|
elif target == 'ent_tag':
|
|
self.make_label = self.make_ent_tag
|
|
elif target == 'sent_start':
|
|
self.make_label = self.make_sent_start
|
|
elif hasattr(target, '__call__'):
|
|
self.make_label = target
|
|
else:
|
|
raise ValueError(Errors.E016)
|
|
self.cfg = dict(cfg)
|
|
self.cfg.setdefault('cnn_maxout_pieces', 2)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.cfg.setdefault('labels', {})
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg['labels'] = value
|
|
|
|
def set_annotations(self, docs, dep_ids, tensors=None):
|
|
pass
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, tok2vec=None,
|
|
sgd=None, **kwargs):
|
|
gold_tuples = nonproj.preprocess_training_data(get_gold_tuples())
|
|
for raw_text, annots_brackets in gold_tuples:
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for i in range(len(ids)):
|
|
label = self.make_label(i, words, tags, heads, deps, ents)
|
|
if label is not None and label not in self.labels:
|
|
self.labels[label] = len(self.labels)
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt('token_vector_width')
|
|
self.model = self.Model(len(self.labels), tok2vec=tok2vec)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, tok2vec=None, **cfg):
|
|
token_vector_width = util.env_opt('token_vector_width', 96)
|
|
softmax = Softmax(n_tags, token_vector_width*2)
|
|
model = chain(
|
|
tok2vec,
|
|
LayerNorm(Maxout(token_vector_width*2, token_vector_width, pieces=3)),
|
|
softmax
|
|
)
|
|
model.tok2vec = tok2vec
|
|
model.softmax = softmax
|
|
return model
|
|
|
|
def predict(self, docs):
|
|
tokvecs = self.model.tok2vec(docs)
|
|
scores = self.model.softmax(tokvecs)
|
|
return tokvecs, scores
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
if len(docs) != len(golds):
|
|
raise ValueError(Errors.E077.format(value='loss', n_docs=len(docs),
|
|
n_golds=len(golds)))
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype='i')
|
|
guesses = scores.argmax(axis=1)
|
|
for i, gold in enumerate(golds):
|
|
for j in range(len(docs[i])):
|
|
# Handes alignment for tokenization differences
|
|
label = self.make_label(j, gold.words, gold.tags,
|
|
gold.heads, gold.labels, gold.ents)
|
|
if label is None or label not in self.labels:
|
|
correct[idx] = guesses[idx]
|
|
else:
|
|
correct[idx] = self.labels[label]
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype='i')
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
loss = (d_scores**2).sum()
|
|
return float(loss), d_scores
|
|
|
|
@staticmethod
|
|
def make_dep(i, words, tags, heads, deps, ents):
|
|
if deps[i] is None or heads[i] is None:
|
|
return None
|
|
return deps[i]
|
|
|
|
@staticmethod
|
|
def make_tag(i, words, tags, heads, deps, ents):
|
|
return tags[i]
|
|
|
|
@staticmethod
|
|
def make_ent(i, words, tags, heads, deps, ents):
|
|
if ents is None:
|
|
return None
|
|
return ents[i]
|
|
|
|
@staticmethod
|
|
def make_dep_tag_offset(i, words, tags, heads, deps, ents):
|
|
if deps[i] is None or heads[i] is None:
|
|
return None
|
|
offset = heads[i] - i
|
|
offset = min(offset, 2)
|
|
offset = max(offset, -2)
|
|
return '%s-%s:%d' % (deps[i], tags[i], offset)
|
|
|
|
@staticmethod
|
|
def make_ent_tag(i, words, tags, heads, deps, ents):
|
|
if ents is None or ents[i] is None:
|
|
return None
|
|
else:
|
|
return '%s-%s' % (tags[i], ents[i])
|
|
|
|
@staticmethod
|
|
def make_sent_start(target, words, tags, heads, deps, ents, cache=True, _cache={}):
|
|
'''A multi-task objective for representing sentence boundaries,
|
|
using BILU scheme. (O is impossible)
|
|
|
|
The implementation of this method uses an internal cache that relies
|
|
on the identity of the heads array, to avoid requiring a new piece
|
|
of gold data. You can pass cache=False if you know the cache will
|
|
do the wrong thing.
|
|
'''
|
|
assert len(words) == len(heads)
|
|
assert target < len(words), (target, len(words))
|
|
if cache:
|
|
if id(heads) in _cache:
|
|
return _cache[id(heads)][target]
|
|
else:
|
|
for key in list(_cache.keys()):
|
|
_cache.pop(key)
|
|
sent_tags = ['I-SENT'] * len(words)
|
|
_cache[id(heads)] = sent_tags
|
|
else:
|
|
sent_tags = ['I-SENT'] * len(words)
|
|
|
|
def _find_root(child):
|
|
seen = set([child])
|
|
while child is not None and heads[child] != child:
|
|
seen.add(child)
|
|
child = heads[child]
|
|
return child
|
|
|
|
sentences = {}
|
|
for i in range(len(words)):
|
|
root = _find_root(i)
|
|
if root is None:
|
|
sent_tags[i] = None
|
|
else:
|
|
sentences.setdefault(root, []).append(i)
|
|
for root, span in sorted(sentences.items()):
|
|
if len(span) == 1:
|
|
sent_tags[span[0]] = 'U-SENT'
|
|
else:
|
|
sent_tags[span[0]] = 'B-SENT'
|
|
sent_tags[span[-1]] = 'L-SENT'
|
|
return sent_tags[target]
|
|
|
|
|
|
class ClozeMultitask(Pipe):
|
|
@classmethod
|
|
def Model(cls, vocab, tok2vec, **cfg):
|
|
output_size = vocab.vectors.data.shape[1]
|
|
output_layer = chain(
|
|
LayerNorm(Maxout(output_size, tok2vec.nO, pieces=3)),
|
|
zero_init(Affine(output_size, output_size, drop_factor=0.0))
|
|
)
|
|
model = chain(tok2vec, output_layer)
|
|
model = masked_language_model(vocab, model)
|
|
model.tok2vec = tok2vec
|
|
model.output_layer = output_layer
|
|
return model
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = cfg
|
|
|
|
def set_annotations(self, docs, dep_ids, tensors=None):
|
|
pass
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None,
|
|
tok2vec=None, sgd=None, **kwargs):
|
|
link_vectors_to_models(self.vocab)
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab, tok2vec)
|
|
X = self.model.ops.allocate((5, self.model.tok2vec.nO))
|
|
self.model.output_layer.begin_training(X)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def predict(self, docs):
|
|
tokvecs = self.model.tok2vec(docs)
|
|
vectors = self.model.output_layer(tokvecs)
|
|
return tokvecs, vectors
|
|
|
|
def get_loss(self, docs, vectors, prediction):
|
|
# The simplest way to implement this would be to vstack the
|
|
# token.vector values, but that's a bit inefficient, especially on GPU.
|
|
# Instead we fetch the index into the vectors table for each of our tokens,
|
|
# and look them up all at once. This prevents data copying.
|
|
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = vectors[ids]
|
|
gradient = (prediction - target) / prediction.shape[0]
|
|
loss = (gradient**2).sum()
|
|
return float(loss), gradient
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
|
pass
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
if losses is not None and self.name not in losses:
|
|
losses[self.name] = 0.
|
|
predictions, bp_predictions = self.model.begin_update(docs, drop=drop)
|
|
loss, d_predictions = self.get_loss(docs, self.vocab.vectors.data, predictions)
|
|
bp_predictions(d_predictions, sgd=sgd)
|
|
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
|
|
|
|
class SimilarityHook(Pipe):
|
|
"""
|
|
Experimental: A pipeline component to install a hook for supervised
|
|
similarity into `Doc` objects. Requires a `Tensorizer` to pre-process
|
|
documents. The similarity model can be any object obeying the Thinc `Model`
|
|
interface. By default, the model concatenates the elementwise mean and
|
|
elementwise max of the two tensors, and compares them using the
|
|
Cauchy-like similarity function from Chen (2013):
|
|
|
|
>>> similarity = 1. / (1. + (W * (vec1-vec2)**2).sum())
|
|
|
|
Where W is a vector of dimension weights, initialized to 1.
|
|
"""
|
|
name = 'similarity'
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
|
|
@classmethod
|
|
def Model(cls, length):
|
|
return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
|
|
|
|
def __call__(self, doc):
|
|
"""Install similarity hook"""
|
|
doc.user_hooks['similarity'] = self.predict
|
|
return doc
|
|
|
|
def pipe(self, docs, **kwargs):
|
|
for doc in docs:
|
|
yield self(doc)
|
|
|
|
def predict(self, doc1, doc2):
|
|
return self.model.predict([(doc1, doc2)])
|
|
|
|
def update(self, doc1_doc2, golds, sgd=None, drop=0.):
|
|
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
|
|
|
|
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
|
|
"""Allocate model, using width from tensorizer in pipeline.
|
|
|
|
gold_tuples (iterable): Gold-standard training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
if self.model is True:
|
|
self.model = self.Model(pipeline[0].model.nO)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
|
|
class TextCategorizer(Pipe):
|
|
name = 'textcat'
|
|
|
|
@classmethod
|
|
def Model(cls, nr_class, **cfg):
|
|
embed_size = util.env_opt("embed_size", 2000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 96)
|
|
tok2vec = Tok2Vec(token_vector_width, embed_size, **cfg)
|
|
return build_simple_cnn_text_classifier(tok2vec, nr_class, **cfg)
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
if self.model in (None, True, False):
|
|
return None
|
|
else:
|
|
return self.model.tok2vec
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self._rehearsal_model = None
|
|
self.cfg = dict(cfg)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.cfg.setdefault('labels', [])
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg['labels'] = value
|
|
|
|
def __call__(self, doc):
|
|
scores, tensors = self.predict([doc])
|
|
self.set_annotations([doc], scores, tensors=tensors)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
scores, tensors = self.predict(docs)
|
|
self.set_annotations(docs, scores, tensors=tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
scores = self.model(docs)
|
|
scores = self.model.ops.asarray(scores)
|
|
tensors = [doc.tensor for doc in docs]
|
|
return scores, tensors
|
|
|
|
def set_annotations(self, docs, scores, tensors=None):
|
|
for i, doc in enumerate(docs):
|
|
for j, label in enumerate(self.labels):
|
|
doc.cats[label] = float(scores[i, j])
|
|
|
|
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
|
|
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
|
loss, d_scores = self.get_loss(docs, golds, scores)
|
|
bp_scores(d_scores, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += loss
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
if self._rehearsal_model is None:
|
|
return
|
|
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
|
target = self._rehearsal_model(docs)
|
|
gradient = scores - target
|
|
bp_scores(gradient, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += (gradient**2).sum()
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
truths = numpy.zeros((len(golds), len(self.labels)), dtype='f')
|
|
not_missing = numpy.ones((len(golds), len(self.labels)), dtype='f')
|
|
for i, gold in enumerate(golds):
|
|
for j, label in enumerate(self.labels):
|
|
if label in gold.cats:
|
|
truths[i, j] = gold.cats[label]
|
|
else:
|
|
not_missing[i, j] = 0.
|
|
truths = self.model.ops.asarray(truths)
|
|
not_missing = self.model.ops.asarray(not_missing)
|
|
d_scores = (scores-truths) / scores.shape[0]
|
|
d_scores *= not_missing
|
|
mean_square_error = ((scores-truths)**2).sum(axis=1).mean()
|
|
return float(mean_square_error), d_scores
|
|
|
|
def add_label(self, label):
|
|
if label in self.labels:
|
|
return 0
|
|
if self.model not in (None, True, False):
|
|
# This functionality was available previously, but was broken.
|
|
# The problem is that we resize the last layer, but the last layer
|
|
# is actually just an ensemble. We're not resizing the child layers
|
|
# -- a huge problem.
|
|
raise ValueError(
|
|
"Cannot currently add labels to pre-trained text classifier. "
|
|
"Add labels before training begins. This functionality was "
|
|
"available in previous versions, but had significant bugs that "
|
|
"let to poor performance")
|
|
#smaller = self.model._layers[-1]
|
|
#larger = Affine(len(self.labels)+1, smaller.nI)
|
|
#copy_array(larger.W[:smaller.nO], smaller.W)
|
|
#copy_array(larger.b[:smaller.nO], smaller.b)
|
|
#self.model._layers[-1] = larger
|
|
self.labels.append(label)
|
|
return 1
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
|
|
**kwargs):
|
|
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
|
|
token_vector_width = pipeline[0].model.nO
|
|
else:
|
|
token_vector_width = 64
|
|
|
|
if self.model is True:
|
|
self.cfg['pretrained_vectors'] = kwargs.get('pretrained_vectors')
|
|
self.model = self.Model(len(self.labels), **self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
|
|
cdef class DependencyParser(Parser):
|
|
name = 'parser'
|
|
TransitionSystem = ArcEager
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
return [nonproj.deprojectivize]
|
|
|
|
def add_multitask_objective(self, target):
|
|
if target == 'cloze':
|
|
cloze = ClozeMultitask(self.vocab)
|
|
self._multitasks.append(cloze)
|
|
else:
|
|
labeller = MultitaskObjective(self.vocab, target=target)
|
|
self._multitasks.append(labeller)
|
|
|
|
def init_multitask_objectives(self, get_gold_tuples, pipeline, sgd=None, **cfg):
|
|
for labeller in self._multitasks:
|
|
tok2vec = self.model.tok2vec
|
|
labeller.begin_training(get_gold_tuples, pipeline=pipeline,
|
|
tok2vec=tok2vec, sgd=sgd)
|
|
|
|
def __reduce__(self):
|
|
return (DependencyParser, (self.vocab, self.moves, self.model),
|
|
None, None)
|
|
|
|
|
|
cdef class EntityRecognizer(Parser):
|
|
name = 'ner'
|
|
TransitionSystem = BiluoPushDown
|
|
|
|
nr_feature = 6
|
|
|
|
def add_multitask_objective(self, target):
|
|
if target == 'cloze':
|
|
cloze = ClozeMultitask(self.vocab)
|
|
self._multitasks.append(cloze)
|
|
else:
|
|
labeller = MultitaskObjective(self.vocab, target=target)
|
|
self._multitasks.append(labeller)
|
|
|
|
def init_multitask_objectives(self, get_gold_tuples, pipeline, sgd=None, **cfg):
|
|
for labeller in self._multitasks:
|
|
tok2vec = self.model.tok2vec
|
|
labeller.begin_training(get_gold_tuples, pipeline=pipeline,
|
|
tok2vec=tok2vec)
|
|
|
|
def __reduce__(self):
|
|
return (EntityRecognizer, (self.vocab, self.moves, self.model),
|
|
None, None)
|
|
|
|
@property
|
|
def labels(self):
|
|
# Get the labels from the model by looking at the available moves, e.g.
|
|
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
|
|
return [move.split('-')[1] for move in self.move_names
|
|
if move[0] in ('B', 'I', 'L', 'U')]
|
|
|
|
|
|
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'Tensorizer', 'TextCategorizer']
|