spaCy/spacy/tests/spans/test_span.py

94 lines
2.4 KiB
Python

from __future__ import unicode_literals
from spacy.attrs import HEAD
from spacy.en import English
from spacy.tokens.doc import Doc
import numpy as np
import pytest
@pytest.fixture
def doc(EN):
return EN('This is a sentence. This is another sentence. And a third.')
@pytest.mark.models
def test_sent_spans(doc):
sents = list(doc.sents)
assert sents[0].start == 0
assert sents[0].end == 5
assert len(sents) == 3
assert sum(len(sent) for sent in sents) == len(doc)
@pytest.mark.models
def test_root(doc):
np = doc[2:4]
assert len(np) == 2
assert np.orth_ == 'a sentence'
assert np.root.orth_ == 'sentence'
assert np.root.head.orth_ == 'is'
def test_root2(EN):
text = 'through North and South Carolina'
doc = EN(text)
heads = np.asarray([[0, 3, -1, -2, -4]], dtype='int32')
doc.from_array([HEAD], heads.T)
south_carolina = doc[-2:]
assert south_carolina.root.text == 'Carolina'
def test_sent(doc):
'''Test new span.sent property'''
#return EN('This is a sentence. This is another sentence. And a third.')
heads = np.asarray([[1, 0, -1, -1, -1, 1, 0, -1, -1, -1, 2, 1, 0, -1]], dtype='int32')
doc.from_array([HEAD], heads.T)
assert len(list(doc.sents))
span = doc[:2]
assert span.sent.root.text == 'is'
assert span.sent.text == 'This is a sentence.'
span = doc[6:7]
assert span.sent.root.left_edge.text == 'This'
def test_default_sentiment(EN):
'''Test new span.sentiment property's default averaging behaviour'''
good = EN.vocab[u'good']
good.sentiment = 3.0
bad = EN.vocab[u'bad']
bad.sentiment = -2.0
doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff'])
good_stuff = doc[:2]
assert good_stuff.sentiment == 3.0 / 2
bad_stuff = doc[-2:]
assert bad_stuff.sentiment == -2. / 2
good_stuff_bad = doc[:-1]
assert good_stuff_bad.sentiment == (3.+-2) / 3.
def test_override_sentiment(EN):
'''Test new span.sentiment property's default averaging behaviour'''
good = EN.vocab[u'good']
good.sentiment = 3.0
bad = EN.vocab[u'bad']
bad.sentiment = -2.0
doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff'])
doc.user_span_hooks['sentiment'] = lambda span: 10.0
good_stuff = doc[:2]
assert good_stuff.sentiment == 10.0
bad_stuff = doc[-2:]
assert bad_stuff.sentiment == 10.0
good_stuff_bad = doc[:-1]
assert good_stuff_bad.sentiment == 10.0