mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 02:16:32 +03:00
98ed941c39
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
554 lines
18 KiB
Python
554 lines
18 KiB
Python
import re
|
|
|
|
import numpy
|
|
import pytest
|
|
|
|
from spacy.lang.en import English
|
|
from spacy.lang.de import German
|
|
from spacy.tokenizer import Tokenizer
|
|
from spacy.tokens import Doc
|
|
from spacy.training import Example
|
|
from spacy.util import compile_prefix_regex, compile_suffix_regex, ensure_path
|
|
from spacy.util import compile_infix_regex
|
|
from spacy.vocab import Vocab
|
|
from spacy.symbols import ORTH
|
|
|
|
|
|
@pytest.mark.issue(743)
|
|
def test_issue743():
|
|
doc = Doc(Vocab(), ["hello", "world"])
|
|
token = doc[0]
|
|
s = set([token])
|
|
items = list(s)
|
|
assert items[0] is token
|
|
|
|
|
|
@pytest.mark.issue(801)
|
|
@pytest.mark.skip(
|
|
reason="Can not be fixed unless with variable-width lookbehinds, cf. PR #3218"
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"text,tokens",
|
|
[
|
|
('"deserve,"--and', ['"', "deserve", ',"--', "and"]),
|
|
("exception;--exclusive", ["exception", ";--", "exclusive"]),
|
|
("day.--Is", ["day", ".--", "Is"]),
|
|
("refinement:--just", ["refinement", ":--", "just"]),
|
|
("memories?--To", ["memories", "?--", "To"]),
|
|
("Useful.=--Therefore", ["Useful", ".=--", "Therefore"]),
|
|
("=Hope.=--Pandora", ["=", "Hope", ".=--", "Pandora"]),
|
|
],
|
|
)
|
|
def test_issue801(en_tokenizer, text, tokens):
|
|
"""Test that special characters + hyphens are split correctly."""
|
|
doc = en_tokenizer(text)
|
|
assert len(doc) == len(tokens)
|
|
assert [t.text for t in doc] == tokens
|
|
|
|
|
|
@pytest.mark.issue(1061)
|
|
def test_issue1061():
|
|
"""Test special-case works after tokenizing. Was caching problem."""
|
|
text = "I like _MATH_ even _MATH_ when _MATH_, except when _MATH_ is _MATH_! but not _MATH_."
|
|
tokenizer = English().tokenizer
|
|
doc = tokenizer(text)
|
|
assert "MATH" in [w.text for w in doc]
|
|
assert "_MATH_" not in [w.text for w in doc]
|
|
|
|
tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}])
|
|
doc = tokenizer(text)
|
|
assert "_MATH_" in [w.text for w in doc]
|
|
assert "MATH" not in [w.text for w in doc]
|
|
|
|
# For sanity, check it works when pipeline is clean.
|
|
tokenizer = English().tokenizer
|
|
tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}])
|
|
doc = tokenizer(text)
|
|
assert "_MATH_" in [w.text for w in doc]
|
|
assert "MATH" not in [w.text for w in doc]
|
|
|
|
|
|
@pytest.mark.issue(1963)
|
|
def test_issue1963(en_tokenizer):
|
|
"""Test that doc.merge() resizes doc.tensor"""
|
|
doc = en_tokenizer("a b c d")
|
|
doc.tensor = numpy.ones((len(doc), 128), dtype="f")
|
|
with doc.retokenize() as retokenizer:
|
|
retokenizer.merge(doc[0:2])
|
|
assert len(doc) == 3
|
|
assert doc.tensor.shape == (3, 128)
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="Can not be fixed without variable-width look-behind (which we don't want)"
|
|
)
|
|
@pytest.mark.issue(1235)
|
|
def test_issue1235():
|
|
"""Test that g is not split of if preceded by a number and a letter"""
|
|
nlp = English()
|
|
testwords = "e2g 2g 52g"
|
|
doc = nlp(testwords)
|
|
assert len(doc) == 5
|
|
assert doc[0].text == "e2g"
|
|
assert doc[1].text == "2"
|
|
assert doc[2].text == "g"
|
|
assert doc[3].text == "52"
|
|
assert doc[4].text == "g"
|
|
|
|
|
|
@pytest.mark.issue(1242)
|
|
def test_issue1242():
|
|
nlp = English()
|
|
doc = nlp("")
|
|
assert len(doc) == 0
|
|
docs = list(nlp.pipe(["", "hello"]))
|
|
assert len(docs[0]) == 0
|
|
assert len(docs[1]) == 1
|
|
|
|
|
|
@pytest.mark.issue(1257)
|
|
def test_issue1257():
|
|
"""Test that tokens compare correctly."""
|
|
doc1 = Doc(Vocab(), words=["a", "b", "c"])
|
|
doc2 = Doc(Vocab(), words=["a", "c", "e"])
|
|
assert doc1[0] != doc2[0]
|
|
assert not doc1[0] == doc2[0]
|
|
|
|
|
|
@pytest.mark.issue(1375)
|
|
def test_issue1375():
|
|
"""Test that token.nbor() raises IndexError for out-of-bounds access."""
|
|
doc = Doc(Vocab(), words=["0", "1", "2"])
|
|
with pytest.raises(IndexError):
|
|
assert doc[0].nbor(-1)
|
|
assert doc[1].nbor(-1).text == "0"
|
|
with pytest.raises(IndexError):
|
|
assert doc[2].nbor(1)
|
|
assert doc[1].nbor(1).text == "2"
|
|
|
|
|
|
@pytest.mark.issue(1488)
|
|
def test_issue1488():
|
|
"""Test that tokenizer can parse DOT inside non-whitespace separators"""
|
|
prefix_re = re.compile(r"""[\[\("']""")
|
|
suffix_re = re.compile(r"""[\]\)"']""")
|
|
infix_re = re.compile(r"""[-~\.]""")
|
|
simple_url_re = re.compile(r"""^https?://""")
|
|
|
|
def my_tokenizer(nlp):
|
|
return Tokenizer(
|
|
nlp.vocab,
|
|
{},
|
|
prefix_search=prefix_re.search,
|
|
suffix_search=suffix_re.search,
|
|
infix_finditer=infix_re.finditer,
|
|
token_match=simple_url_re.match,
|
|
)
|
|
|
|
nlp = English()
|
|
nlp.tokenizer = my_tokenizer(nlp)
|
|
doc = nlp("This is a test.")
|
|
for token in doc:
|
|
assert token.text
|
|
|
|
|
|
@pytest.mark.issue(1494)
|
|
def test_issue1494():
|
|
"""Test if infix_finditer works correctly"""
|
|
infix_re = re.compile(r"""[^a-z]""")
|
|
test_cases = [
|
|
("token 123test", ["token", "1", "2", "3", "test"]),
|
|
("token 1test", ["token", "1test"]),
|
|
("hello...test", ["hello", ".", ".", ".", "test"]),
|
|
]
|
|
|
|
def new_tokenizer(nlp):
|
|
return Tokenizer(nlp.vocab, {}, infix_finditer=infix_re.finditer)
|
|
|
|
nlp = English()
|
|
nlp.tokenizer = new_tokenizer(nlp)
|
|
for text, expected in test_cases:
|
|
assert [token.text for token in nlp(text)] == expected
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="Can not be fixed without iterative looping between prefix/suffix and infix"
|
|
)
|
|
@pytest.mark.issue(2070)
|
|
def test_issue2070():
|
|
"""Test that checks that a dot followed by a quote is handled
|
|
appropriately.
|
|
"""
|
|
# Problem: The dot is now properly split off, but the prefix/suffix rules
|
|
# are not applied again afterwards. This means that the quote will still be
|
|
# attached to the remaining token.
|
|
nlp = English()
|
|
doc = nlp('First sentence."A quoted sentence" he said ...')
|
|
assert len(doc) == 11
|
|
|
|
|
|
@pytest.mark.issue(2926)
|
|
def test_issue2926(fr_tokenizer):
|
|
"""Test that the tokenizer correctly splits tokens separated by a slash (/)
|
|
ending in a digit.
|
|
"""
|
|
doc = fr_tokenizer("Learn html5/css3/javascript/jquery")
|
|
assert len(doc) == 8
|
|
assert doc[0].text == "Learn"
|
|
assert doc[1].text == "html5"
|
|
assert doc[2].text == "/"
|
|
assert doc[3].text == "css3"
|
|
assert doc[4].text == "/"
|
|
assert doc[5].text == "javascript"
|
|
assert doc[6].text == "/"
|
|
assert doc[7].text == "jquery"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text",
|
|
[
|
|
"ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume",
|
|
"oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:",
|
|
],
|
|
)
|
|
@pytest.mark.issue(2626)
|
|
def test_issue2626_2835(en_tokenizer, text):
|
|
"""Check that sentence doesn't cause an infinite loop in the tokenizer."""
|
|
doc = en_tokenizer(text)
|
|
assert doc
|
|
|
|
|
|
@pytest.mark.issue(2656)
|
|
def test_issue2656(en_tokenizer):
|
|
"""Test that tokenizer correctly splits off punctuation after numbers with
|
|
decimal points.
|
|
"""
|
|
doc = en_tokenizer("I went for 40.3, and got home by 10.0.")
|
|
assert len(doc) == 11
|
|
assert doc[0].text == "I"
|
|
assert doc[1].text == "went"
|
|
assert doc[2].text == "for"
|
|
assert doc[3].text == "40.3"
|
|
assert doc[4].text == ","
|
|
assert doc[5].text == "and"
|
|
assert doc[6].text == "got"
|
|
assert doc[7].text == "home"
|
|
assert doc[8].text == "by"
|
|
assert doc[9].text == "10.0"
|
|
assert doc[10].text == "."
|
|
|
|
|
|
@pytest.mark.issue(2754)
|
|
def test_issue2754(en_tokenizer):
|
|
"""Test that words like 'a' and 'a.m.' don't get exceptional norm values."""
|
|
a = en_tokenizer("a")
|
|
assert a[0].norm_ == "a"
|
|
am = en_tokenizer("am")
|
|
assert am[0].norm_ == "am"
|
|
|
|
|
|
@pytest.mark.issue(3002)
|
|
def test_issue3002():
|
|
"""Test that the tokenizer doesn't hang on a long list of dots"""
|
|
nlp = German()
|
|
doc = nlp(
|
|
"880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl"
|
|
)
|
|
assert len(doc) == 5
|
|
|
|
|
|
@pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot")
|
|
@pytest.mark.issue(3449)
|
|
def test_issue3449():
|
|
nlp = English()
|
|
nlp.add_pipe("sentencizer")
|
|
text1 = "He gave the ball to I. Do you want to go to the movies with I?"
|
|
text2 = "He gave the ball to I. Do you want to go to the movies with I?"
|
|
text3 = "He gave the ball to I.\nDo you want to go to the movies with I?"
|
|
t1 = nlp(text1)
|
|
t2 = nlp(text2)
|
|
t3 = nlp(text3)
|
|
assert t1[5].text == "I"
|
|
assert t2[5].text == "I"
|
|
assert t3[5].text == "I"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,words", [("A'B C", ["A", "'", "B", "C"]), ("A-B", ["A-B"])]
|
|
)
|
|
def test_gold_misaligned(en_tokenizer, text, words):
|
|
doc = en_tokenizer(text)
|
|
Example.from_dict(doc, {"words": words})
|
|
|
|
|
|
def test_tokenizer_handles_no_word(tokenizer):
|
|
tokens = tokenizer("")
|
|
assert len(tokens) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["lorem"])
|
|
def test_tokenizer_handles_single_word(tokenizer, text):
|
|
tokens = tokenizer(text)
|
|
assert tokens[0].text == text
|
|
|
|
|
|
def test_tokenizer_handles_punct(tokenizer):
|
|
text = "Lorem, ipsum."
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) == 4
|
|
assert tokens[0].text == "Lorem"
|
|
assert tokens[1].text == ","
|
|
assert tokens[2].text == "ipsum"
|
|
assert tokens[1].text != "Lorem"
|
|
|
|
|
|
def test_tokenizer_handles_punct_braces(tokenizer):
|
|
text = "Lorem, (ipsum)."
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) == 6
|
|
|
|
|
|
def test_tokenizer_handles_digits(tokenizer):
|
|
exceptions = ["hu", "bn"]
|
|
text = "Lorem ipsum: 1984."
|
|
tokens = tokenizer(text)
|
|
|
|
if tokens[0].lang_ not in exceptions:
|
|
assert len(tokens) == 5
|
|
assert tokens[0].text == "Lorem"
|
|
assert tokens[3].text == "1984"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text",
|
|
["google.com", "python.org", "spacy.io", "explosion.ai", "http://www.google.com"],
|
|
)
|
|
def test_tokenizer_keep_urls(tokenizer, text):
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["NASDAQ:GOOG"])
|
|
def test_tokenizer_colons(tokenizer, text):
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) == 3
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text", ["hello123@example.com", "hi+there@gmail.it", "matt@explosion.ai"]
|
|
)
|
|
def test_tokenizer_keeps_email(tokenizer, text):
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
def test_tokenizer_handles_long_text(tokenizer):
|
|
text = """Lorem ipsum dolor sit amet, consectetur adipiscing elit
|
|
|
|
Cras egestas orci non porttitor maximus.
|
|
Maecenas quis odio id dolor rhoncus dignissim. Curabitur sed velit at orci ultrices sagittis. Nulla commodo euismod arcu eget vulputate.
|
|
|
|
Phasellus tincidunt, augue quis porta finibus, massa sapien consectetur augue, non lacinia enim nibh eget ipsum. Vestibulum in bibendum mauris.
|
|
|
|
"Nullam porta fringilla enim, a dictum orci consequat in." Mauris nec malesuada justo."""
|
|
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) > 5
|
|
|
|
|
|
@pytest.mark.parametrize("file_name", ["sun.txt"])
|
|
def test_tokenizer_handle_text_from_file(tokenizer, file_name):
|
|
loc = ensure_path(__file__).parent / file_name
|
|
with loc.open("r", encoding="utf8") as infile:
|
|
text = infile.read()
|
|
assert len(text) != 0
|
|
tokens = tokenizer(text)
|
|
assert len(tokens) > 100
|
|
|
|
|
|
def test_tokenizer_suspected_freeing_strings(tokenizer):
|
|
text1 = "Lorem dolor sit amet, consectetur adipiscing elit."
|
|
text2 = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
|
|
tokens1 = tokenizer(text1)
|
|
tokens2 = tokenizer(text2)
|
|
assert tokens1[0].text == "Lorem"
|
|
assert tokens2[0].text == "Lorem"
|
|
|
|
|
|
@pytest.mark.parametrize("text,tokens", [("lorem", [{"orth": "lo"}, {"orth": "rem"}])])
|
|
def test_tokenizer_add_special_case(tokenizer, text, tokens):
|
|
tokenizer.add_special_case(text, tokens)
|
|
doc = tokenizer(text)
|
|
assert doc[0].text == tokens[0]["orth"]
|
|
assert doc[1].text == tokens[1]["orth"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,tokens",
|
|
[
|
|
("lorem", [{"orth": "lo"}, {"orth": "re"}]),
|
|
("lorem", [{"orth": "lo", "tag": "A"}, {"orth": "rem"}]),
|
|
],
|
|
)
|
|
def test_tokenizer_validate_special_case(tokenizer, text, tokens):
|
|
with pytest.raises(ValueError):
|
|
tokenizer.add_special_case(text, tokens)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,tokens", [("lorem", [{"orth": "lo", "norm": "LO"}, {"orth": "rem"}])]
|
|
)
|
|
def test_tokenizer_add_special_case_tag(text, tokens):
|
|
vocab = Vocab()
|
|
tokenizer = Tokenizer(vocab, {}, None, None, None)
|
|
tokenizer.add_special_case(text, tokens)
|
|
doc = tokenizer(text)
|
|
assert doc[0].text == tokens[0]["orth"]
|
|
assert doc[0].norm_ == tokens[0]["norm"]
|
|
assert doc[1].text == tokens[1]["orth"]
|
|
|
|
|
|
def test_tokenizer_special_cases_with_affixes(tokenizer):
|
|
text = '(((_SPECIAL_ A/B, A/B-A/B")'
|
|
tokenizer.add_special_case("_SPECIAL_", [{"orth": "_SPECIAL_"}])
|
|
tokenizer.add_special_case("A/B", [{"orth": "A/B"}])
|
|
doc = tokenizer(text)
|
|
assert [token.text for token in doc] == [
|
|
"(",
|
|
"(",
|
|
"(",
|
|
"_SPECIAL_",
|
|
"A/B",
|
|
",",
|
|
"A/B",
|
|
"-",
|
|
"A/B",
|
|
'"',
|
|
")",
|
|
]
|
|
|
|
|
|
def test_tokenizer_special_cases_with_affixes_preserve_spacy():
|
|
tokenizer = English().tokenizer
|
|
# reset all special cases
|
|
tokenizer.rules = {}
|
|
|
|
# in-place modification (only merges)
|
|
text = "''a'' "
|
|
tokenizer.add_special_case("''", [{"ORTH": "''"}])
|
|
assert tokenizer(text).text == text
|
|
|
|
# not in-place (splits and merges)
|
|
tokenizer.add_special_case("ab", [{"ORTH": "a"}, {"ORTH": "b"}])
|
|
text = "ab ab ab ''ab ab'' ab'' ''ab"
|
|
assert tokenizer(text).text == text
|
|
|
|
|
|
def test_tokenizer_special_cases_with_period(tokenizer):
|
|
text = "_SPECIAL_."
|
|
tokenizer.add_special_case("_SPECIAL_", [{"orth": "_SPECIAL_"}])
|
|
doc = tokenizer(text)
|
|
assert [token.text for token in doc] == ["_SPECIAL_", "."]
|
|
|
|
|
|
def test_tokenizer_special_cases_idx(tokenizer):
|
|
text = "the _ID'X_"
|
|
tokenizer.add_special_case("_ID'X_", [{"orth": "_ID"}, {"orth": "'X_"}])
|
|
doc = tokenizer(text)
|
|
assert doc[1].idx == 4
|
|
assert doc[2].idx == 7
|
|
|
|
|
|
def test_tokenizer_special_cases_spaces(tokenizer):
|
|
assert [t.text for t in tokenizer("a b c")] == ["a", "b", "c"]
|
|
tokenizer.add_special_case("a b c", [{"ORTH": "a b c"}])
|
|
assert [t.text for t in tokenizer("a b c")] == ["a b c"]
|
|
|
|
|
|
def test_tokenizer_flush_cache(en_vocab):
|
|
suffix_re = re.compile(r"[\.]$")
|
|
tokenizer = Tokenizer(
|
|
en_vocab,
|
|
suffix_search=suffix_re.search,
|
|
)
|
|
assert [t.text for t in tokenizer("a.")] == ["a", "."]
|
|
tokenizer.suffix_search = None
|
|
assert [t.text for t in tokenizer("a.")] == ["a."]
|
|
|
|
|
|
def test_tokenizer_flush_specials(en_vocab):
|
|
suffix_re = re.compile(r"[\.]$")
|
|
rules = {"a a": [{"ORTH": "a a"}]}
|
|
tokenizer1 = Tokenizer(
|
|
en_vocab,
|
|
suffix_search=suffix_re.search,
|
|
rules=rules,
|
|
)
|
|
assert [t.text for t in tokenizer1("a a.")] == ["a a", "."]
|
|
tokenizer1.rules = {}
|
|
assert [t.text for t in tokenizer1("a a.")] == ["a", "a", "."]
|
|
|
|
|
|
def test_tokenizer_prefix_suffix_overlap_lookbehind(en_vocab):
|
|
# the prefix and suffix matches overlap in the suffix lookbehind
|
|
prefixes = ["a(?=.)"]
|
|
suffixes = [r"(?<=\w)\.", r"(?<=a)\d+\."]
|
|
prefix_re = compile_prefix_regex(prefixes)
|
|
suffix_re = compile_suffix_regex(suffixes)
|
|
tokenizer = Tokenizer(
|
|
en_vocab,
|
|
prefix_search=prefix_re.search,
|
|
suffix_search=suffix_re.search,
|
|
)
|
|
tokens = [t.text for t in tokenizer("a10.")]
|
|
assert tokens == ["a", "10", "."]
|
|
explain_tokens = [t[1] for t in tokenizer.explain("a10.")]
|
|
assert tokens == explain_tokens
|
|
|
|
|
|
def test_tokenizer_infix_prefix(en_vocab):
|
|
# the prefix and suffix matches overlap in the suffix lookbehind
|
|
infixes = ["±"]
|
|
suffixes = ["%"]
|
|
infix_re = compile_infix_regex(infixes)
|
|
suffix_re = compile_suffix_regex(suffixes)
|
|
tokenizer = Tokenizer(
|
|
en_vocab,
|
|
infix_finditer=infix_re.finditer,
|
|
suffix_search=suffix_re.search,
|
|
)
|
|
tokens = [t.text for t in tokenizer("±10%")]
|
|
assert tokens == ["±10", "%"]
|
|
explain_tokens = [t[1] for t in tokenizer.explain("±10%")]
|
|
assert tokens == explain_tokens
|
|
|
|
|
|
@pytest.mark.issue(10086)
|
|
def test_issue10086(en_tokenizer):
|
|
"""Test special case works when part of infix substring."""
|
|
text = "No--don't see"
|
|
|
|
# without heuristics: do n't
|
|
en_tokenizer.faster_heuristics = False
|
|
doc = en_tokenizer(text)
|
|
assert "n't" in [w.text for w in doc]
|
|
assert "do" in [w.text for w in doc]
|
|
|
|
# with (default) heuristics: don't
|
|
en_tokenizer.faster_heuristics = True
|
|
doc = en_tokenizer(text)
|
|
assert "don't" in [w.text for w in doc]
|
|
|
|
|
|
def test_tokenizer_initial_special_case_explain(en_vocab):
|
|
tokenizer = Tokenizer(
|
|
en_vocab,
|
|
token_match=re.compile("^id$").match,
|
|
rules={
|
|
"id": [{"ORTH": "i"}, {"ORTH": "d"}],
|
|
},
|
|
)
|
|
tokens = [t.text for t in tokenizer("id")]
|
|
explain_tokens = [t[1] for t in tokenizer.explain("id")]
|
|
assert tokens == explain_tokens
|