spaCy/spacy/tokenizer.pyx
Matthew Honnibal 5d0d2de955 Support 'memory zones' for user memory management
Add a context manage nlp.memory_zone(), which will begin
memory_zone() blocks on the vocab, string store, and potentially
other components.

Once the memory_zone() block expires, spaCy will free any shared
resources that were allocated for the text-processing that occurred
within the memory_zone. If you create Doc objects within a memory
zone, it's invalid to access them once the memory zone is expired.

The purpose of this is that spaCy creates and stores Lexeme objects
in the Vocab that can be shared between multiple Doc objects. It also
interns strings. Normally, spaCy can't know when all Doc objects using
a Lexeme are out-of-scope, so new Lexemes accumulate in the vocab,
causing memory pressure.

Memory zones solve this problem by telling spaCy "okay none of the
documents allocated within this block will be accessed again". This
lets spaCy free all new Lexeme objects and other data that were
created during the block.

The mechanism is general, so memory_zone() context managers can be
added to other components that could benefit from them, e.g. pipeline
components.

I experimented with adding memory zone support to the tokenizer as well,
for its cache. However, this seems unnecessarily complicated. It makes
more sense to just stick a limit on the cache size. This lets spaCy
benefit from the efficiency advantage of the cache better, because
we can maintain a (bounded) cache even if only small batches of
documents are being processed.
2024-09-08 13:06:54 +02:00

882 lines
36 KiB
Cython

# cython: embedsignature=True, binding=True
cimport cython
from cymem.cymem cimport Pool
from cython.operator cimport dereference as deref
from cython.operator cimport preincrement as preinc
from libc.string cimport memcpy, memset
from libcpp.set cimport set as stdset
from preshed.maps cimport PreshMap
import re
from .lexeme cimport EMPTY_LEXEME
from .strings cimport hash_string
from .tokens.doc cimport Doc
from . import util
from .attrs import intify_attrs
from .errors import Errors
from .scorer import Scorer
from .symbols import NORM, ORTH
from .tokens import Span
from .training import validate_examples
from .util import get_words_and_spaces
cdef class Tokenizer:
"""Segment text, and create Doc objects with the discovered segment
boundaries.
DOCS: https://spacy.io/api/tokenizer
"""
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
suffix_search=None, infix_finditer=None, token_match=None,
url_match=None, faster_heuristics=True, max_cache_size=10000):
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
vocab (Vocab): A storage container for lexical types.
rules (dict): Exceptions and special-cases for the tokenizer.
prefix_search (callable): A function matching the signature of
`re.compile(string).search` to match prefixes.
suffix_search (callable): A function matching the signature of
`re.compile(string).search` to match suffixes.
infix_finditer (callable): A function matching the signature of
`re.compile(string).finditer` to find infixes.
token_match (callable): A function matching the signature of
`re.compile(string).match`, for matching strings to be
recognized as tokens.
url_match (callable): A function matching the signature of
`re.compile(string).match`, for matching strings to be
recognized as urls.
faster_heuristics (bool): Whether to restrict the final
Matcher-based pass for rules to those containing affixes or space.
Defaults to True.
max_cache_size (int): Maximum number of tokenization chunks to cache.
EXAMPLE:
>>> tokenizer = Tokenizer(nlp.vocab)
DOCS: https://spacy.io/api/tokenizer#init
"""
self.mem = Pool()
self._cache = PreshMap()
self._specials = PreshMap()
self.token_match = token_match
self.url_match = url_match
self.prefix_search = prefix_search
self.suffix_search = suffix_search
self.infix_finditer = infix_finditer
self.vocab = vocab
self.faster_heuristics = faster_heuristics
self._rules = {}
self._special_matcher = PhraseMatcher(self.vocab)
self._load_special_cases(rules)
self.max_cache_size = max_cache_size
@property
def token_match(self):
return self._token_match
@token_match.setter
def token_match(self, token_match):
self._token_match = token_match
self._reload_special_cases()
@property
def url_match(self):
return self._url_match
@url_match.setter
def url_match(self, url_match):
self._url_match = url_match
self._reload_special_cases()
@property
def prefix_search(self):
return self._prefix_search
@prefix_search.setter
def prefix_search(self, prefix_search):
self._prefix_search = prefix_search
self._reload_special_cases()
@property
def suffix_search(self):
return self._suffix_search
@suffix_search.setter
def suffix_search(self, suffix_search):
self._suffix_search = suffix_search
self._reload_special_cases()
@property
def infix_finditer(self):
return self._infix_finditer
@infix_finditer.setter
def infix_finditer(self, infix_finditer):
self._infix_finditer = infix_finditer
self._reload_special_cases()
@property
def rules(self):
return self._rules
@rules.setter
def rules(self, rules):
self._rules = {}
self._flush_cache()
self._flush_specials()
self._cache = PreshMap()
self._specials = PreshMap()
self._load_special_cases(rules)
@property
def faster_heuristics(self):
return self._faster_heuristics
@faster_heuristics.setter
def faster_heuristics(self, faster_heuristics):
self._faster_heuristics = faster_heuristics
self._reload_special_cases()
def __reduce__(self):
args = (self.vocab,
self.rules,
self.prefix_search,
self.suffix_search,
self.infix_finditer,
self.token_match,
self.url_match)
return (self.__class__, args, None, None)
def __call__(self, str string):
"""Tokenize a string.
string (str): The string to tokenize.
RETURNS (Doc): A container for linguistic annotations.
DOCS: https://spacy.io/api/tokenizer#call
"""
doc = self._tokenize_affixes(string, True)
self._apply_special_cases(doc)
return doc
@cython.boundscheck(False)
cdef Doc _tokenize_affixes(self, str string, bint with_special_cases):
"""Tokenize according to affix and token_match settings.
string (str): The string to tokenize.
RETURNS (Doc): A container for linguistic annotations.
"""
if len(string) >= (2 ** 30):
raise ValueError(Errors.E025.format(length=len(string)))
cdef int length = len(string)
cdef Doc doc = Doc(self.vocab)
if length == 0:
return doc
cdef int i = 0
cdef int start = 0
cdef int has_special = 0
cdef bint in_ws = string[0].isspace()
cdef str span
# The task here is much like string.split, but not quite
# We find spans of whitespace and non-space characters, and ignore
# spans that are exactly ' '. So, our sequences will all be separated
# by either ' ' or nothing.
for uc in string:
if uc.isspace() != in_ws:
if start < i:
# When we want to make this fast, get the data buffer once
# with PyUnicode_AS_DATA, and then maintain a start_byte
# and end_byte, so we can call hash64 directly. That way
# we don't have to create the slice when we hit the cache.
span = string[start:i]
key = hash_string(span)
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
self._tokenize(doc, span, key, &has_special, with_special_cases)
if uc == ' ':
doc.c[doc.length - 1].spacy = True
start = i + 1
else:
start = i
in_ws = not in_ws
i += 1
if start < i:
span = string[start:]
key = hash_string(span)
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
self._tokenize(doc, span, key, &has_special, with_special_cases)
doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
return doc
def pipe(self, texts, batch_size=1000):
"""Tokenize a stream of texts.
texts: A sequence of unicode texts.
batch_size (int): Number of texts to accumulate in an internal buffer.
Defaults to 1000.
YIELDS (Doc): A sequence of Doc objects, in order.
DOCS: https://spacy.io/api/tokenizer#pipe
"""
for text in texts:
yield self(text)
def _flush_cache(self):
self._reset_cache([key for key in self._cache])
def _reset_cache(self, keys):
for k in keys:
cached = <_Cached*>self._cache.get(k)
del self._cache[k]
if cached is not NULL:
self.mem.free(cached)
def _flush_specials(self):
self._special_matcher = PhraseMatcher(self.vocab)
for k in self._specials:
cached = <_Cached*>self._specials.get(k)
del self._specials[k]
if cached is not NULL:
self.mem.free(cached)
cdef int _apply_special_cases(self, Doc doc) except -1:
"""Retokenize doc according to special cases.
doc (Doc): Document.
"""
cdef int i
cdef int max_length = 0
cdef bint modify_in_place
cdef Pool mem = Pool()
cdef vector[SpanC] c_matches
cdef vector[SpanC] c_filtered
cdef int offset
cdef int modified_doc_length
# Find matches for special cases
self._special_matcher.find_matches(doc, 0, doc.length, &c_matches)
# Skip processing if no matches
if c_matches.size() == 0:
return True
self._filter_special_spans(c_matches, c_filtered, doc.length)
# Put span info in span.start-indexed dict and calculate maximum
# intermediate document size
(span_data, max_length, modify_in_place) = self._prepare_special_spans(doc, c_filtered)
# If modifications never increase doc length, can modify in place
if modify_in_place:
tokens = doc.c
# Otherwise create a separate array to store modified tokens
else:
assert max_length > 0
tokens = <TokenC*>mem.alloc(max_length, sizeof(TokenC))
# Modify tokenization according to filtered special cases
offset = self._retokenize_special_spans(doc, tokens, span_data)
# Allocate more memory for doc if needed
modified_doc_length = doc.length + offset
while modified_doc_length >= doc.max_length:
doc._realloc(doc.max_length * 2)
# If not modified in place, copy tokens back to doc
if not modify_in_place:
memcpy(doc.c, tokens, max_length * sizeof(TokenC))
for i in range(doc.length + offset, doc.length):
memset(&doc.c[i], 0, sizeof(TokenC))
doc.c[i].lex = &EMPTY_LEXEME
doc.length = doc.length + offset
return True
cdef void _filter_special_spans(self, vector[SpanC] &original, vector[SpanC] &filtered, int doc_len) nogil:
cdef int seen_i
cdef SpanC span
cdef stdset[int] seen_tokens
stdsort(original.begin(), original.end(), len_start_cmp)
cdef int orig_i = original.size() - 1
while orig_i >= 0:
span = original[orig_i]
if not seen_tokens.count(span.start) and not seen_tokens.count(span.end - 1):
filtered.push_back(span)
for seen_i in range(span.start, span.end):
seen_tokens.insert(seen_i)
orig_i -= 1
stdsort(filtered.begin(), filtered.end(), start_cmp)
cdef object _prepare_special_spans(self, Doc doc, vector[SpanC] &filtered):
spans = [doc[match.start:match.end] for match in filtered]
cdef bint modify_in_place = True
cdef int curr_length = doc.length
cdef int max_length = 0
cdef int span_length_diff = 0
span_data = {}
for span in spans:
rule = self._rules.get(span.text, None)
span_length_diff = 0
if rule:
span_length_diff = len(rule) - (span.end - span.start)
if span_length_diff > 0:
modify_in_place = False
curr_length += span_length_diff
if curr_length > max_length:
max_length = curr_length
span_data[span.start] = (span.text, span.start, span.end, span_length_diff)
return (span_data, max_length, modify_in_place)
cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens, object span_data):
cdef int i = 0
cdef int j = 0
cdef int offset = 0
cdef _Cached* cached
cdef int idx_offset = 0
cdef int orig_final_spacy
cdef int orig_idx
cdef int span_start
cdef int span_end
while i < doc.length:
if i not in span_data:
tokens[i + offset] = doc.c[i]
i += 1
else:
span = span_data[i]
span_start = span[1]
span_end = span[2]
cached = <_Cached*>self._specials.get(hash_string(span[0]))
if cached == NULL:
# Copy original tokens if no rule found
for j in range(span_end - span_start):
tokens[i + offset + j] = doc.c[i + j]
i += span_end - span_start
else:
# Copy special case tokens into doc and adjust token and
# character offsets
idx_offset = 0
orig_final_spacy = doc.c[span_end - 1].spacy
orig_idx = doc.c[i].idx
for j in range(cached.length):
tokens[i + offset + j] = cached.data.tokens[j]
tokens[i + offset + j].idx = orig_idx + idx_offset
idx_offset += cached.data.tokens[j].lex.length
if cached.data.tokens[j].spacy:
idx_offset += 1
tokens[i + offset + cached.length - 1].spacy = orig_final_spacy
i += span_end - span_start
offset += span[3]
return offset
cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1:
cdef bint specials_hit = 0
cdef bint cache_hit = 0
cdef int i
if with_special_cases:
cached = <_Cached*>self._specials.get(key)
if cached == NULL:
specials_hit = False
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
has_special[0] = 1
specials_hit = True
if not specials_hit:
cached = <_Cached*>self._cache.get(key)
if cached == NULL:
cache_hit = False
else:
if cached.is_lex:
for i in range(cached.length):
tokens.push_back(cached.data.lexemes[i], False)
else:
for i in range(cached.length):
tokens.push_back(&cached.data.tokens[i], False)
cache_hit = True
if not specials_hit and not cache_hit:
return False
return True
cdef int _tokenize(self, Doc tokens, str span, hash_t orig_key, int* has_special, bint with_special_cases) except -1:
cdef vector[LexemeC*] prefixes
cdef vector[LexemeC*] suffixes
cdef int orig_size
orig_size = tokens.length
span = self._split_affixes(span, &prefixes, &suffixes,
has_special, with_special_cases)
self._attach_tokens(tokens, span, &prefixes, &suffixes, has_special,
with_special_cases)
if len(self._cache) < self.max_cache_size:
self._save_cached(&tokens.c[orig_size], orig_key, has_special,
tokens.length - orig_size)
cdef str _split_affixes(
self,
str string,
vector[const LexemeC*] *prefixes,
vector[const LexemeC*] *suffixes,
int* has_special,
bint with_special_cases
):
cdef str prefix
cdef str suffix
cdef str minus_pre
cdef str minus_suf
cdef size_t last_size = 0
while string and len(string) != last_size:
if self.token_match and self.token_match(string):
break
if with_special_cases and self._specials.get(hash_string(string)) != NULL:
break
last_size = len(string)
pre_len = self.find_prefix(string)
if pre_len != 0:
prefix = string[:pre_len]
minus_pre = string[pre_len:]
if minus_pre and with_special_cases and self._specials.get(hash_string(minus_pre)) != NULL:
string = minus_pre
prefixes.push_back(self.vocab.get(prefix))
break
suf_len = self.find_suffix(string[pre_len:])
if suf_len != 0:
suffix = string[-suf_len:]
minus_suf = string[:-suf_len]
if minus_suf and with_special_cases and self._specials.get(hash_string(minus_suf)) != NULL:
string = minus_suf
suffixes.push_back(self.vocab.get(suffix))
break
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
string = string[pre_len:-suf_len]
prefixes.push_back(self.vocab.get(prefix))
suffixes.push_back(self.vocab.get(suffix))
elif pre_len:
string = minus_pre
prefixes.push_back(self.vocab.get(prefix))
elif suf_len:
string = minus_suf
suffixes.push_back(self.vocab.get(suffix))
return string
cdef int _attach_tokens(self, Doc tokens, str string,
vector[const LexemeC*] *prefixes,
vector[const LexemeC*] *suffixes,
int* has_special,
bint with_special_cases) except -1:
cdef const LexemeC* lexeme
cdef str span
cdef int i
if prefixes.size():
for i in range(prefixes.size()):
tokens.push_back(prefixes[0][i], False)
if string:
if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
pass
elif (
(self.token_match and self.token_match(string)) or
(self.url_match and self.url_match(string))
):
# We're always saying 'no' to spaces here -- the caller will
# fix up the outermost one, with reference to the original.
# See Issue #859
tokens.push_back(self.vocab.get(string), False)
else:
matches = self.find_infix(string)
if not matches:
tokens.push_back(self.vocab.get(string), False)
else:
# Let's say we have dyn-o-mite-dave - the regex finds the
# start and end positions of the hyphens
start = 0
start_before_infixes = start
for match in matches:
infix_start = match.start()
infix_end = match.end()
if infix_start == start_before_infixes:
continue
if infix_start != start:
span = string[start:infix_start]
tokens.push_back(self.vocab.get(span), False)
if infix_start != infix_end:
# If infix_start != infix_end, it means the infix
# token is non-empty. Empty infix tokens are useful
# for tokenization in some languages (see
# https://github.com/explosion/spaCy/issues/768)
infix_span = string[infix_start:infix_end]
tokens.push_back(self.vocab.get(infix_span), False)
start = infix_end
span = string[start:]
if span:
tokens.push_back(self.vocab.get(span), False)
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
while it != suffixes.rend():
lexeme = deref(it)
preinc(it)
tokens.push_back(lexeme, False)
cdef int _save_cached(self, const TokenC* tokens, hash_t key,
int* has_special, int n) except -1:
cdef int i
if n <= 0:
# avoid mem alloc of zero length
return 0
# Historically this check was mostly used to avoid caching
# chunks that had tokens owned by the Doc. Now that that's
# not a thing, I don't think we need this?
for i in range(n):
if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL:
return 0
# See #1250
if has_special[0]:
return 0
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
cached.length = n
cached.is_lex = True
lexemes = <const LexemeC**>self.mem.alloc(n, sizeof(LexemeC**))
for i in range(n):
lexemes[i] = tokens[i].lex
cached.data.lexemes = <const LexemeC* const*>lexemes
self._cache.set(key, cached)
def find_infix(self, str string):
"""Find internal split points of the string, such as hyphens.
string (str): The string to segment.
RETURNS (list): A list of `re.MatchObject` objects that have `.start()`
and `.end()` methods, denoting the placement of internal segment
separators, e.g. hyphens.
DOCS: https://spacy.io/api/tokenizer#find_infix
"""
if self.infix_finditer is None:
return 0
return list(self.infix_finditer(string))
def find_prefix(self, str string):
"""Find the length of a prefix that should be segmented from the
string, or None if no prefix rules match.
string (str): The string to segment.
RETURNS (int): The length of the prefix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_prefix
"""
if self.prefix_search is None:
return 0
match = self.prefix_search(string)
return (match.end() - match.start()) if match is not None else 0
def find_suffix(self, str string):
"""Find the length of a suffix that should be segmented from the
string, or None if no suffix rules match.
string (str): The string to segment.
Returns (int): The length of the suffix if present, otherwise `None`.
DOCS: https://spacy.io/api/tokenizer#find_suffix
"""
if self.suffix_search is None:
return 0
match = self.suffix_search(string)
return (match.end() - match.start()) if match is not None else 0
def _load_special_cases(self, special_cases):
"""Add special-case tokenization rules."""
if special_cases is not None:
for chunk, substrings in sorted(special_cases.items()):
self.add_special_case(chunk, substrings)
def _validate_special_case(self, chunk, substrings):
"""Check whether the `ORTH` fields match the string. Check that
additional features beyond `ORTH` and `NORM` are not set by the
exception.
chunk (str): The string to specially tokenize.
substrings (iterable): A sequence of dicts, where each dict describes
a token and its attributes.
"""
attrs = [intify_attrs(spec) for spec in substrings]
orth = "".join([spec[ORTH] for spec in attrs])
if chunk != orth:
raise ValueError(Errors.E997.format(chunk=chunk, orth=orth, token_attrs=substrings))
for substring in attrs:
for attr in substring:
if attr not in (ORTH, NORM):
raise ValueError(Errors.E1005.format(attr=self.vocab.strings[attr], chunk=chunk))
def add_special_case(self, str string, substrings):
"""Add a special-case tokenization rule.
string (str): The string to specially tokenize.
substrings (iterable): A sequence of dicts, where each dict describes
a token and its attributes. The `ORTH` fields of the attributes
must exactly match the string when they are concatenated.
DOCS: https://spacy.io/api/tokenizer#add_special_case
"""
self._validate_special_case(string, substrings)
substrings = list(substrings)
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
cached.length = len(substrings)
cached.is_lex = False
cached.data.tokens = self.vocab.make_fused_token(substrings)
key = hash_string(string)
stale_special = <_Cached*>self._specials.get(key)
self._specials.set(key, cached)
if stale_special is not NULL:
self.mem.free(stale_special)
self._rules[string] = substrings
self._flush_cache()
if not self.faster_heuristics or self.find_prefix(string) or self.find_infix(string) or self.find_suffix(string) or " " in string:
self._special_matcher.add(string, [self._tokenize_affixes(string, False)])
def _reload_special_cases(self):
self._flush_cache()
self._flush_specials()
self._load_special_cases(self._rules)
def explain(self, text):
"""A debugging tokenizer that provides information about which
tokenizer rule or pattern was matched for each token. The tokens
produced are identical to `nlp.tokenizer()` except for whitespace
tokens.
string (str): The string to tokenize.
RETURNS (list): A list of (pattern_string, token_string) tuples
DOCS: https://spacy.io/api/tokenizer#explain
"""
prefix_search = self.prefix_search
if prefix_search is None:
prefix_search = re.compile("a^").search
suffix_search = self.suffix_search
if suffix_search is None:
suffix_search = re.compile("a^").search
infix_finditer = self.infix_finditer
if infix_finditer is None:
infix_finditer = re.compile("a^").finditer
token_match = self.token_match
if token_match is None:
token_match = re.compile("a^").match
url_match = self.url_match
if url_match is None:
url_match = re.compile("a^").match
special_cases = {}
for orth, special_tokens in self.rules.items():
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings) for special_token in special_tokens]
tokens = []
for substring in text.split():
suffixes = []
while substring:
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
continue
while prefix_search(substring) or suffix_search(substring):
if token_match(substring):
tokens.append(("TOKEN_MATCH", substring))
substring = ''
break
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
break
if prefix_search(substring):
split = prefix_search(substring).end()
# break if pattern matches the empty string
if split == 0:
break
tokens.append(("PREFIX", substring[:split]))
substring = substring[split:]
if substring in special_cases:
continue
if suffix_search(substring):
split = suffix_search(substring).start()
# break if pattern matches the empty string
if split == len(substring):
break
suffixes.append(("SUFFIX", substring[split:]))
substring = substring[:split]
if len(substring) == 0:
continue
if token_match(substring):
tokens.append(("TOKEN_MATCH", substring))
substring = ''
elif url_match(substring):
tokens.append(("URL_MATCH", substring))
substring = ''
elif substring in special_cases:
tokens.extend((f"SPECIAL-{i + 1}", self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
elif list(infix_finditer(substring)):
infixes = infix_finditer(substring)
offset = 0
for match in infixes:
if offset == 0 and match.start() == 0:
continue
if substring[offset : match.start()]:
tokens.append(("TOKEN", substring[offset : match.start()]))
if substring[match.start() : match.end()]:
tokens.append(("INFIX", substring[match.start() : match.end()]))
offset = match.end()
if substring[offset:]:
tokens.append(("TOKEN", substring[offset:]))
substring = ''
elif substring:
tokens.append(("TOKEN", substring))
substring = ''
tokens.extend(reversed(suffixes))
# Find matches for special cases handled by special matcher
words, spaces = get_words_and_spaces([t[1] for t in tokens], text)
t_words = []
t_spaces = []
for word, space in zip(words, spaces):
if not word.isspace():
t_words.append(word)
t_spaces.append(space)
doc = Doc(self.vocab, words=t_words, spaces=t_spaces)
matches = self._special_matcher(doc)
spans = [Span(doc, s, e, label=m_id) for m_id, s, e in matches]
spans = util.filter_spans(spans)
# Replace matched tokens with their exceptions
i = 0
final_tokens = []
spans_by_start = {s.start: s for s in spans}
while i < len(tokens):
if i in spans_by_start:
span = spans_by_start[i]
exc = [d[ORTH] for d in special_cases[span.label_]]
# The phrase matcher can overmatch for tokens separated by
# spaces in the text but not in the underlying rule, so skip
# cases where the texts aren't identical
if span.text != "".join([self.vocab.strings[orth] for orth in exc]):
final_tokens.append(tokens[i])
i += 1
else:
for j, orth in enumerate(exc):
final_tokens.append((f"SPECIAL-{j + 1}", self.vocab.strings[orth]))
i += len(span)
else:
final_tokens.append(tokens[i])
i += 1
return final_tokens
def score(self, examples, **kwargs):
validate_examples(examples, "Tokenizer.score")
return Scorer.score_tokenization(examples)
def to_disk(self, path, **kwargs):
"""Save the current state to a directory.
path (str / Path): A path to a directory, which will be created if
it doesn't exist.
exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/tokenizer#to_disk
"""
path = util.ensure_path(path)
with path.open("wb") as file_:
file_.write(self.to_bytes(**kwargs))
def from_disk(self, path, *, exclude=tuple()):
"""Loads state from a directory. Modifies the object in place and
returns it.
path (str / Path): A path to a directory.
exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The modified `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_disk
"""
path = util.ensure_path(path)
with path.open("rb") as file_:
bytes_data = file_.read()
self.from_bytes(bytes_data, exclude=exclude)
return self
def to_bytes(self, *, exclude=tuple()):
"""Serialize the current state to a binary string.
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#to_bytes
"""
serializers = {
"vocab": lambda: self.vocab.to_bytes(exclude=exclude),
"prefix_search": lambda: _get_regex_pattern(self.prefix_search),
"suffix_search": lambda: _get_regex_pattern(self.suffix_search),
"infix_finditer": lambda: _get_regex_pattern(self.infix_finditer),
"token_match": lambda: _get_regex_pattern(self.token_match),
"url_match": lambda: _get_regex_pattern(self.url_match),
"exceptions": lambda: dict(sorted(self._rules.items())),
"faster_heuristics": lambda: self.faster_heuristics,
}
return util.to_bytes(serializers, exclude)
def from_bytes(self, bytes_data, *, exclude=tuple()):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
exclude (list): String names of serialization fields to exclude.
RETURNS (Tokenizer): The `Tokenizer` object.
DOCS: https://spacy.io/api/tokenizer#from_bytes
"""
data = {}
deserializers = {
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
"prefix_search": lambda b: data.setdefault("prefix_search", b),
"suffix_search": lambda b: data.setdefault("suffix_search", b),
"infix_finditer": lambda b: data.setdefault("infix_finditer", b),
"token_match": lambda b: data.setdefault("token_match", b),
"url_match": lambda b: data.setdefault("url_match", b),
"exceptions": lambda b: data.setdefault("rules", b),
"faster_heuristics": lambda b: data.setdefault("faster_heuristics", b),
}
# reset all properties and flush all caches (through rules),
# reset rules first so that _reload_special_cases is trivial/fast as
# the other properties are reset
self.rules = {}
self.prefix_search = None
self.suffix_search = None
self.infix_finditer = None
self.token_match = None
self.url_match = None
util.from_bytes(bytes_data, deserializers, exclude)
if "prefix_search" in data and isinstance(data["prefix_search"], str):
self.prefix_search = re.compile(data["prefix_search"]).search
if "suffix_search" in data and isinstance(data["suffix_search"], str):
self.suffix_search = re.compile(data["suffix_search"]).search
if "infix_finditer" in data and isinstance(data["infix_finditer"], str):
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
if "token_match" in data and isinstance(data["token_match"], str):
self.token_match = re.compile(data["token_match"]).match
if "url_match" in data and isinstance(data["url_match"], str):
self.url_match = re.compile(data["url_match"]).match
if "faster_heuristics" in data:
self.faster_heuristics = data["faster_heuristics"]
# always load rules last so that all other settings are set before the
# internal tokenization for the phrase matcher
if "rules" in data and isinstance(data["rules"], dict):
self.rules = data["rules"]
return self
def _get_regex_pattern(regex):
"""Get a pattern string for a regex, or None if the pattern is None."""
return None if regex is None else regex.__self__.pattern
cdef extern from "<algorithm>" namespace "std" nogil:
void stdsort "sort"(vector[SpanC].iterator,
vector[SpanC].iterator,
bint (*)(SpanC, SpanC))
cdef bint len_start_cmp(SpanC a, SpanC b) nogil:
if a.end - a.start == b.end - b.start:
return b.start < a.start
return a.end - a.start < b.end - b.start
cdef bint start_cmp(SpanC a, SpanC b) nogil:
return a.start < b.start