mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* small fix in example imports * throw error when train_corpus or dev_corpus is not a string * small fix in custom logger example * limit macro_auc to labels with 2 annotations * fix typo * also create parents of output_dir if need be * update documentation of textcat scores * refactor TextCatEnsemble * fix tests for new AUC definition * bump to 3.0.0a42 * update docs * rename to spacy.TextCatEnsemble.v2 * spacy.TextCatEnsemble.v1 in legacy * cleanup * small fix * update to 3.0.0rc2 * fix import that got lost in merge * cursed IDE * fix two typos
		
			
				
	
	
		
			212 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional, List
 | 
						|
 | 
						|
from thinc.types import Floats2d
 | 
						|
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
 | 
						|
from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention
 | 
						|
from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum
 | 
						|
from thinc.api import HashEmbed, with_array, with_cpu, uniqued
 | 
						|
from thinc.api import Relu, residual, expand_window
 | 
						|
 | 
						|
from ...attrs import ID, ORTH, PREFIX, SUFFIX, SHAPE, LOWER
 | 
						|
from ...util import registry
 | 
						|
from ..extract_ngrams import extract_ngrams
 | 
						|
from ..staticvectors import StaticVectors
 | 
						|
from ..featureextractor import FeatureExtractor
 | 
						|
from ...tokens import Doc
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TextCatCNN.v1")
 | 
						|
def build_simple_cnn_text_classifier(
 | 
						|
    tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    """
 | 
						|
    Build a simple CNN text classifier, given a token-to-vector model as inputs.
 | 
						|
    If exclusive_classes=True, a softmax non-linearity is applied, so that the
 | 
						|
    outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
 | 
						|
    is applied instead, so that outputs are in the range [0, 1].
 | 
						|
    """
 | 
						|
    with Model.define_operators({">>": chain}):
 | 
						|
        cnn = tok2vec >> list2ragged() >> reduce_mean()
 | 
						|
        if exclusive_classes:
 | 
						|
            output_layer = Softmax(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
 | 
						|
            model = cnn >> output_layer
 | 
						|
            model.set_ref("output_layer", output_layer)
 | 
						|
        else:
 | 
						|
            linear_layer = Linear(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
 | 
						|
            model = cnn >> linear_layer >> Logistic()
 | 
						|
            model.set_ref("output_layer", linear_layer)
 | 
						|
    model.set_ref("tok2vec", tok2vec)
 | 
						|
    model.set_dim("nO", nO)
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TextCatBOW.v1")
 | 
						|
def build_bow_text_classifier(
 | 
						|
    exclusive_classes: bool,
 | 
						|
    ngram_size: int,
 | 
						|
    no_output_layer: bool,
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    with Model.define_operators({">>": chain}):
 | 
						|
        sparse_linear = SparseLinear(nO)
 | 
						|
        model = extract_ngrams(ngram_size, attr=ORTH) >> sparse_linear
 | 
						|
        model = with_cpu(model, model.ops)
 | 
						|
        if not no_output_layer:
 | 
						|
            output_layer = softmax_activation() if exclusive_classes else Logistic()
 | 
						|
            model = model >> with_cpu(output_layer, output_layer.ops)
 | 
						|
    model.set_ref("output_layer", sparse_linear)
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TextCatEnsemble.v2")
 | 
						|
def build_text_classifier(
 | 
						|
    tok2vec: Model[List[Doc], List[Floats2d]],
 | 
						|
    linear_model: Model[List[Doc], Floats2d],
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    exclusive_classes = not linear_model.attrs["multi_label"]
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate}):
 | 
						|
        width = tok2vec.get_dim("nO")
 | 
						|
        cnn_model = (
 | 
						|
                tok2vec
 | 
						|
                >> list2ragged()
 | 
						|
                >> ParametricAttention(width)   # TODO: benchmark performance difference of this layer
 | 
						|
                >> reduce_sum()
 | 
						|
                >> residual(Maxout(nO=width, nI=width))
 | 
						|
                >> Linear(nO=nO, nI=width)
 | 
						|
                >> Dropout(0.0)
 | 
						|
        )
 | 
						|
 | 
						|
        nO_double = nO * 2 if nO else None
 | 
						|
        if exclusive_classes:
 | 
						|
            output_layer = Softmax(nO=nO, nI=nO_double)
 | 
						|
        else:
 | 
						|
            output_layer = Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic()
 | 
						|
        model = (linear_model | cnn_model) >> output_layer
 | 
						|
        model.set_ref("tok2vec", tok2vec)
 | 
						|
    if model.has_dim("nO") is not False:
 | 
						|
        model.set_dim("nO", nO)
 | 
						|
    model.set_ref("output_layer", linear_model.get_ref("output_layer"))
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    return model
 | 
						|
 | 
						|
# TODO: move to legacy
 | 
						|
@registry.architectures.register("spacy.TextCatEnsemble.v1")
 | 
						|
def build_text_classifier(
 | 
						|
    width: int,
 | 
						|
    embed_size: int,
 | 
						|
    pretrained_vectors: Optional[bool],
 | 
						|
    exclusive_classes: bool,
 | 
						|
    ngram_size: int,
 | 
						|
    window_size: int,
 | 
						|
    conv_depth: int,
 | 
						|
    dropout: Optional[float],
 | 
						|
    nO: Optional[int] = None,
 | 
						|
) -> Model:
 | 
						|
    # Don't document this yet, I'm not sure it's right.
 | 
						|
    cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
 | 
						|
    with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
 | 
						|
        lower = HashEmbed(
 | 
						|
            nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout, seed=10
 | 
						|
        )
 | 
						|
        prefix = HashEmbed(
 | 
						|
            nO=width // 2,
 | 
						|
            nV=embed_size,
 | 
						|
            column=cols.index(PREFIX),
 | 
						|
            dropout=dropout,
 | 
						|
            seed=11,
 | 
						|
        )
 | 
						|
        suffix = HashEmbed(
 | 
						|
            nO=width // 2,
 | 
						|
            nV=embed_size,
 | 
						|
            column=cols.index(SUFFIX),
 | 
						|
            dropout=dropout,
 | 
						|
            seed=12,
 | 
						|
        )
 | 
						|
        shape = HashEmbed(
 | 
						|
            nO=width // 2,
 | 
						|
            nV=embed_size,
 | 
						|
            column=cols.index(SHAPE),
 | 
						|
            dropout=dropout,
 | 
						|
            seed=13,
 | 
						|
        )
 | 
						|
        width_nI = sum(layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
 | 
						|
        trained_vectors = FeatureExtractor(cols) >> with_array(
 | 
						|
            uniqued(
 | 
						|
                (lower | prefix | suffix | shape)
 | 
						|
                >> Maxout(nO=width, nI=width_nI, normalize=True),
 | 
						|
                column=cols.index(ORTH),
 | 
						|
            )
 | 
						|
        )
 | 
						|
        if pretrained_vectors:
 | 
						|
            static_vectors = StaticVectors(width)
 | 
						|
            vector_layer = trained_vectors | static_vectors
 | 
						|
            vectors_width = width * 2
 | 
						|
        else:
 | 
						|
            vector_layer = trained_vectors
 | 
						|
            vectors_width = width
 | 
						|
        tok2vec = vector_layer >> with_array(
 | 
						|
            Maxout(width, vectors_width, normalize=True)
 | 
						|
            >> residual(
 | 
						|
                (
 | 
						|
                    expand_window(window_size=window_size)
 | 
						|
                    >> Maxout(
 | 
						|
                        nO=width, nI=width * ((window_size * 2) + 1), normalize=True
 | 
						|
                    )
 | 
						|
                )
 | 
						|
            )
 | 
						|
            ** conv_depth,
 | 
						|
            pad=conv_depth,
 | 
						|
        )
 | 
						|
        cnn_model = (
 | 
						|
            tok2vec
 | 
						|
            >> list2ragged()
 | 
						|
            >> ParametricAttention(width)
 | 
						|
            >> reduce_sum()
 | 
						|
            >> residual(Maxout(nO=width, nI=width))
 | 
						|
            >> Linear(nO=nO, nI=width)
 | 
						|
            >> Dropout(0.0)
 | 
						|
        )
 | 
						|
 | 
						|
        linear_model = build_bow_text_classifier(
 | 
						|
            nO=nO,
 | 
						|
            ngram_size=ngram_size,
 | 
						|
            exclusive_classes=exclusive_classes,
 | 
						|
            no_output_layer=False,
 | 
						|
        )
 | 
						|
        nO_double = nO * 2 if nO else None
 | 
						|
        if exclusive_classes:
 | 
						|
            output_layer = Softmax(nO=nO, nI=nO_double)
 | 
						|
        else:
 | 
						|
            output_layer = Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic()
 | 
						|
        model = (linear_model | cnn_model) >> output_layer
 | 
						|
        model.set_ref("tok2vec", tok2vec)
 | 
						|
    if model.has_dim("nO") is not False:
 | 
						|
        model.set_dim("nO", nO)
 | 
						|
    model.set_ref("output_layer", linear_model.get_ref("output_layer"))
 | 
						|
    model.attrs["multi_label"] = not exclusive_classes
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TextCatLowData.v1")
 | 
						|
def build_text_classifier_lowdata(
 | 
						|
    width: int, dropout: Optional[float], nO: Optional[int] = None
 | 
						|
) -> Model[List[Doc], Floats2d]:
 | 
						|
    # Don't document this yet, I'm not sure it's right.
 | 
						|
    # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
 | 
						|
    with Model.define_operators({">>": chain, "**": clone}):
 | 
						|
        model = (
 | 
						|
            StaticVectors(width)
 | 
						|
            >> list2ragged()
 | 
						|
            >> ParametricAttention(width)
 | 
						|
            >> reduce_sum()
 | 
						|
            >> residual(Relu(width, width)) ** 2
 | 
						|
            >> Linear(nO, width)
 | 
						|
        )
 | 
						|
        if dropout:
 | 
						|
            model = model >> Dropout(dropout)
 | 
						|
        model = model >> Logistic()
 | 
						|
    return model
 |