mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 13:47:13 +03:00
27cbffff1b
This doesn't make a difference given how the `merged_morph` values override the `morph` values for all the final docs, but could have led to unexpected bugs in the future if the converter is modified.
299 lines
9.9 KiB
Python
299 lines
9.9 KiB
Python
import re
|
|
|
|
from .conll_ner_to_docs import n_sents_info
|
|
from ...training import iob_to_biluo, biluo_tags_to_spans
|
|
from ...tokens import Doc, Token, Span
|
|
from ...vocab import Vocab
|
|
from wasabi import Printer
|
|
|
|
|
|
def conllu_to_docs(
|
|
input_data,
|
|
n_sents=10,
|
|
append_morphology=False,
|
|
ner_map=None,
|
|
merge_subtokens=False,
|
|
no_print=False,
|
|
**_
|
|
):
|
|
"""
|
|
Convert conllu files into JSON format for use with train cli.
|
|
append_morphology parameter enables appending morphology to tags, which is
|
|
useful for languages such as Spanish, where UD tags are not so rich.
|
|
|
|
Extract NER tags if available and convert them so that they follow
|
|
BILUO and the Wikipedia scheme
|
|
"""
|
|
MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
|
|
msg = Printer(no_print=no_print)
|
|
n_sents_info(msg, n_sents)
|
|
sent_docs = read_conllx(
|
|
input_data,
|
|
append_morphology=append_morphology,
|
|
ner_tag_pattern=MISC_NER_PATTERN,
|
|
ner_map=ner_map,
|
|
merge_subtokens=merge_subtokens,
|
|
)
|
|
docs = []
|
|
sent_docs_to_merge = []
|
|
for sent_doc in sent_docs:
|
|
sent_docs_to_merge.append(sent_doc)
|
|
if len(sent_docs_to_merge) % n_sents == 0:
|
|
docs.append(Doc.from_docs(sent_docs_to_merge))
|
|
sent_docs_to_merge = []
|
|
if sent_docs_to_merge:
|
|
docs.append(Doc.from_docs(sent_docs_to_merge))
|
|
return docs
|
|
|
|
|
|
def has_ner(input_data, ner_tag_pattern):
|
|
"""
|
|
Check the MISC column for NER tags.
|
|
"""
|
|
for sent in input_data.strip().split("\n\n"):
|
|
lines = sent.strip().split("\n")
|
|
if lines:
|
|
while lines[0].startswith("#"):
|
|
lines.pop(0)
|
|
for line in lines:
|
|
parts = line.split("\t")
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
|
for misc_part in misc.split("|"):
|
|
if re.match(ner_tag_pattern, misc_part):
|
|
return True
|
|
return False
|
|
|
|
|
|
def read_conllx(
|
|
input_data,
|
|
append_morphology=False,
|
|
merge_subtokens=False,
|
|
ner_tag_pattern="",
|
|
ner_map=None,
|
|
):
|
|
""" Yield docs, one for each sentence """
|
|
vocab = Vocab() # need vocab to make a minimal Doc
|
|
for sent in input_data.strip().split("\n\n"):
|
|
lines = sent.strip().split("\n")
|
|
if lines:
|
|
while lines[0].startswith("#"):
|
|
lines.pop(0)
|
|
doc = conllu_sentence_to_doc(
|
|
vocab,
|
|
lines,
|
|
ner_tag_pattern,
|
|
merge_subtokens=merge_subtokens,
|
|
append_morphology=append_morphology,
|
|
ner_map=ner_map,
|
|
)
|
|
yield doc
|
|
|
|
|
|
def get_entities(lines, tag_pattern, ner_map=None):
|
|
"""Find entities in the MISC column according to the pattern and map to
|
|
final entity type with `ner_map` if mapping present. Entity tag is 'O' if
|
|
the pattern is not matched.
|
|
|
|
lines (str): CONLL-U lines for one sentences
|
|
tag_pattern (str): Regex pattern for entity tag
|
|
ner_map (dict): Map old NER tag names to new ones, '' maps to O.
|
|
RETURNS (list): List of BILUO entity tags
|
|
"""
|
|
miscs = []
|
|
for line in lines:
|
|
parts = line.split("\t")
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
|
if "-" in id_ or "." in id_:
|
|
continue
|
|
miscs.append(misc)
|
|
|
|
iob = []
|
|
for misc in miscs:
|
|
iob_tag = "O"
|
|
for misc_part in misc.split("|"):
|
|
tag_match = re.match(tag_pattern, misc_part)
|
|
if tag_match:
|
|
prefix = tag_match.group(2)
|
|
suffix = tag_match.group(3)
|
|
if prefix and suffix:
|
|
iob_tag = prefix + "-" + suffix
|
|
if ner_map:
|
|
suffix = ner_map.get(suffix, suffix)
|
|
if suffix == "":
|
|
iob_tag = "O"
|
|
else:
|
|
iob_tag = prefix + "-" + suffix
|
|
break
|
|
iob.append(iob_tag)
|
|
return iob_to_biluo(iob)
|
|
|
|
|
|
def conllu_sentence_to_doc(
|
|
vocab,
|
|
lines,
|
|
ner_tag_pattern,
|
|
merge_subtokens=False,
|
|
append_morphology=False,
|
|
ner_map=None,
|
|
):
|
|
"""Create an Example from the lines for one CoNLL-U sentence, merging
|
|
subtokens and appending morphology to tags if required.
|
|
|
|
lines (str): The non-comment lines for a CoNLL-U sentence
|
|
ner_tag_pattern (str): The regex pattern for matching NER in MISC col
|
|
RETURNS (Example): An example containing the annotation
|
|
"""
|
|
# create a Doc with each subtoken as its own token
|
|
# if merging subtokens, each subtoken orth is the merged subtoken form
|
|
if not Token.has_extension("merged_orth"):
|
|
Token.set_extension("merged_orth", default="")
|
|
if not Token.has_extension("merged_lemma"):
|
|
Token.set_extension("merged_lemma", default="")
|
|
if not Token.has_extension("merged_morph"):
|
|
Token.set_extension("merged_morph", default="")
|
|
if not Token.has_extension("merged_spaceafter"):
|
|
Token.set_extension("merged_spaceafter", default="")
|
|
words, spaces, tags, poses, morphs, lemmas = [], [], [], [], [], []
|
|
heads, deps = [], []
|
|
subtok_word = ""
|
|
in_subtok = False
|
|
for i in range(len(lines)):
|
|
line = lines[i]
|
|
parts = line.split("\t")
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
|
if "." in id_:
|
|
continue
|
|
if "-" in id_:
|
|
in_subtok = True
|
|
if "-" in id_:
|
|
in_subtok = True
|
|
subtok_word = word
|
|
subtok_start, subtok_end = id_.split("-")
|
|
subtok_spaceafter = "SpaceAfter=No" not in misc
|
|
continue
|
|
if merge_subtokens and in_subtok:
|
|
words.append(subtok_word)
|
|
else:
|
|
words.append(word)
|
|
if in_subtok:
|
|
if id_ == subtok_end:
|
|
spaces.append(subtok_spaceafter)
|
|
else:
|
|
spaces.append(False)
|
|
elif "SpaceAfter=No" in misc:
|
|
spaces.append(False)
|
|
else:
|
|
spaces.append(True)
|
|
if in_subtok and id_ == subtok_end:
|
|
subtok_word = ""
|
|
in_subtok = False
|
|
id_ = int(id_) - 1
|
|
head = (int(head) - 1) if head not in ("0", "_") else id_
|
|
tag = pos if tag == "_" else tag
|
|
morph = morph if morph != "_" else ""
|
|
dep = "ROOT" if dep == "root" else dep
|
|
lemmas.append(lemma)
|
|
poses.append(pos)
|
|
tags.append(tag)
|
|
morphs.append(morph)
|
|
heads.append(head)
|
|
deps.append(dep)
|
|
|
|
doc = Doc(
|
|
vocab,
|
|
words=words,
|
|
spaces=spaces,
|
|
tags=tags,
|
|
pos=poses,
|
|
deps=deps,
|
|
lemmas=lemmas,
|
|
morphs=morphs,
|
|
heads=heads,
|
|
)
|
|
for i in range(len(doc)):
|
|
doc[i]._.merged_orth = words[i]
|
|
doc[i]._.merged_morph = morphs[i]
|
|
doc[i]._.merged_lemma = lemmas[i]
|
|
doc[i]._.merged_spaceafter = spaces[i]
|
|
ents = get_entities(lines, ner_tag_pattern, ner_map)
|
|
doc.ents = biluo_tags_to_spans(doc, ents)
|
|
|
|
if merge_subtokens:
|
|
doc = merge_conllu_subtokens(lines, doc)
|
|
|
|
# create final Doc from custom Doc annotation
|
|
words, spaces, tags, morphs, lemmas, poses = [], [], [], [], [], []
|
|
heads, deps = [], []
|
|
for i, t in enumerate(doc):
|
|
words.append(t._.merged_orth)
|
|
lemmas.append(t._.merged_lemma)
|
|
spaces.append(t._.merged_spaceafter)
|
|
morphs.append(t._.merged_morph)
|
|
if append_morphology and t._.merged_morph:
|
|
tags.append(t.tag_ + "__" + t._.merged_morph)
|
|
else:
|
|
tags.append(t.tag_)
|
|
poses.append(t.pos_)
|
|
heads.append(t.head.i)
|
|
deps.append(t.dep_)
|
|
|
|
doc_x = Doc(
|
|
vocab,
|
|
words=words,
|
|
spaces=spaces,
|
|
tags=tags,
|
|
morphs=morphs,
|
|
lemmas=lemmas,
|
|
pos=poses,
|
|
deps=deps,
|
|
heads=heads,
|
|
)
|
|
doc_x.ents = [Span(doc_x, ent.start, ent.end, label=ent.label) for ent in doc.ents]
|
|
|
|
return doc_x
|
|
|
|
|
|
def merge_conllu_subtokens(lines, doc):
|
|
# identify and process all subtoken spans to prepare attrs for merging
|
|
subtok_spans = []
|
|
for line in lines:
|
|
parts = line.split("\t")
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
|
if "-" in id_:
|
|
subtok_start, subtok_end = id_.split("-")
|
|
subtok_span = doc[int(subtok_start) - 1 : int(subtok_end)]
|
|
subtok_spans.append(subtok_span)
|
|
# create merged tag, morph, and lemma values
|
|
tags = []
|
|
morphs = {}
|
|
lemmas = []
|
|
for token in subtok_span:
|
|
tags.append(token.tag_)
|
|
lemmas.append(token.lemma_)
|
|
if token._.merged_morph:
|
|
for feature in token._.merged_morph.split("|"):
|
|
field, values = feature.split("=", 1)
|
|
if field not in morphs:
|
|
morphs[field] = set()
|
|
for value in values.split(","):
|
|
morphs[field].add(value)
|
|
# create merged features for each morph field
|
|
for field, values in morphs.items():
|
|
morphs[field] = field + "=" + ",".join(sorted(values))
|
|
# set the same attrs on all subtok tokens so that whatever head the
|
|
# retokenizer chooses, the final attrs are available on that token
|
|
for token in subtok_span:
|
|
token._.merged_orth = token.orth_
|
|
token._.merged_lemma = " ".join(lemmas)
|
|
token.tag_ = "_".join(tags)
|
|
token._.merged_morph = "|".join(sorted(morphs.values()))
|
|
token._.merged_spaceafter = (
|
|
True if subtok_span[-1].whitespace_ else False
|
|
)
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
for span in subtok_spans:
|
|
retokenizer.merge(span)
|
|
|
|
return doc
|