mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* define threshold for scoring textcat in TextCat config * fix unit test and documentation
		
			
				
	
	
		
			381 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from itertools import islice
 | 
						|
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Iterator, Any
 | 
						|
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
 | 
						|
from thinc.types import Floats2d
 | 
						|
import numpy
 | 
						|
 | 
						|
from .pipe import Pipe
 | 
						|
from ..language import Language
 | 
						|
from ..training import Example, validate_examples
 | 
						|
from ..errors import Errors
 | 
						|
from ..scorer import Scorer
 | 
						|
from .. import util
 | 
						|
from ..tokens import Doc
 | 
						|
from ..vocab import Vocab
 | 
						|
 | 
						|
 | 
						|
default_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatEnsemble.v1"
 | 
						|
exclusive_classes = false
 | 
						|
pretrained_vectors = null
 | 
						|
width = 64
 | 
						|
conv_depth = 2
 | 
						|
embed_size = 2000
 | 
						|
window_size = 1
 | 
						|
ngram_size = 1
 | 
						|
dropout = null
 | 
						|
"""
 | 
						|
DEFAULT_TEXTCAT_MODEL = Config().from_str(default_model_config)["model"]
 | 
						|
 | 
						|
bow_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatBOW.v1"
 | 
						|
exclusive_classes = false
 | 
						|
ngram_size = 1
 | 
						|
no_output_layer = false
 | 
						|
"""
 | 
						|
 | 
						|
cnn_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatCNN.v1"
 | 
						|
exclusive_classes = false
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
embed_size = 2000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "textcat",
 | 
						|
    assigns=["doc.cats"],
 | 
						|
    default_config={"labels": [], "threshold": 0.5, "model": DEFAULT_TEXTCAT_MODEL},
 | 
						|
    scores=[
 | 
						|
        "cats_score",
 | 
						|
        "cats_score_desc",
 | 
						|
        "cats_p",
 | 
						|
        "cats_r",
 | 
						|
        "cats_f",
 | 
						|
        "cats_macro_f",
 | 
						|
        "cats_macro_auc",
 | 
						|
        "cats_f_per_type",
 | 
						|
        "cats_macro_auc_per_type",
 | 
						|
    ],
 | 
						|
    default_score_weights={"cats_score": 1.0},
 | 
						|
)
 | 
						|
def make_textcat(
 | 
						|
    nlp: Language,
 | 
						|
    name: str,
 | 
						|
    model: Model[List[Doc], List[Floats2d]],
 | 
						|
    labels: Iterable[str],
 | 
						|
    threshold: float,
 | 
						|
) -> "TextCategorizer":
 | 
						|
    """Create a TextCategorizer compoment. The text categorizer predicts categories
 | 
						|
    over a whole document. It can learn one or more labels, and the labels can
 | 
						|
    be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive
 | 
						|
    (i.e. zero or more labels may be true per doc). The multi-label setting is
 | 
						|
    controlled by the model instance that's provided.
 | 
						|
 | 
						|
    model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
 | 
						|
        scores for each category.
 | 
						|
    labels (list): A list of categories to learn. If empty, the model infers the
 | 
						|
        categories from the data.
 | 
						|
    threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
    """
 | 
						|
    return TextCategorizer(nlp.vocab, model, name, labels=labels, threshold=threshold)
 | 
						|
 | 
						|
 | 
						|
class TextCategorizer(Pipe):
 | 
						|
    """Pipeline component for text classification.
 | 
						|
 | 
						|
    DOCS: https://nightly.spacy.io/api/textcategorizer
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "textcat",
 | 
						|
        *,
 | 
						|
        labels: Iterable[str],
 | 
						|
        threshold: float,
 | 
						|
    ) -> None:
 | 
						|
        """Initialize a text categorizer.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name, used to add entries to the
 | 
						|
            losses during training.
 | 
						|
        labels (Iterable[str]): The labels to use.
 | 
						|
        threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self._rehearsal_model = None
 | 
						|
        cfg = {"labels": labels, "threshold": threshold}
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self) -> Tuple[str]:
 | 
						|
        """RETURNS (Tuple[str]): The labels currently added to the component.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#labels
 | 
						|
        """
 | 
						|
        return tuple(self.cfg.setdefault("labels", []))
 | 
						|
 | 
						|
    @labels.setter
 | 
						|
    def labels(self, value: Iterable[str]) -> None:
 | 
						|
        self.cfg["labels"] = tuple(value)
 | 
						|
 | 
						|
    def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
 | 
						|
        """Apply the pipe to a stream of documents. This usually happens under
 | 
						|
        the hood when the nlp object is called on a text and all components are
 | 
						|
        applied to the Doc.
 | 
						|
 | 
						|
        stream (Iterable[Doc]): A stream of documents.
 | 
						|
        batch_size (int): The number of documents to buffer.
 | 
						|
        YIELDS (Doc): Processed documents in order.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#pipe
 | 
						|
        """
 | 
						|
        for docs in util.minibatch(stream, size=batch_size):
 | 
						|
            scores = self.predict(docs)
 | 
						|
            self.set_annotations(docs, scores)
 | 
						|
            yield from docs
 | 
						|
 | 
						|
    def predict(self, docs: Iterable[Doc]):
 | 
						|
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to predict.
 | 
						|
        RETURNS: The models prediction for each document.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#predict
 | 
						|
        """
 | 
						|
        tensors = [doc.tensor for doc in docs]
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            xp = get_array_module(tensors)
 | 
						|
            scores = xp.zeros((len(docs), len(self.labels)))
 | 
						|
            return scores
 | 
						|
        scores = self.model.predict(docs)
 | 
						|
        scores = self.model.ops.asarray(scores)
 | 
						|
        return scores
 | 
						|
 | 
						|
    def set_annotations(self, docs: Iterable[Doc], scores) -> None:
 | 
						|
        """Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to modify.
 | 
						|
        scores: The scores to set, produced by TextCategorizer.predict.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#set_annotations
 | 
						|
        """
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            for j, label in enumerate(self.labels):
 | 
						|
                doc.cats[label] = float(scores[i, j])
 | 
						|
 | 
						|
    def update(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        drop: float = 0.0,
 | 
						|
        set_annotations: bool = False,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        """Learn from a batch of documents and gold-standard information,
 | 
						|
        updating the pipe's model. Delegates to predict and get_loss.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        set_annotations (bool): Whether or not to update the Example objects
 | 
						|
            with the predictions.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#update
 | 
						|
        """
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        validate_examples(examples, "TextCategorizer.update")
 | 
						|
        if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
 | 
						|
        loss, d_scores = self.get_loss(examples, scores)
 | 
						|
        bp_scores(d_scores)
 | 
						|
        if sgd is not None:
 | 
						|
            self.model.finish_update(sgd)
 | 
						|
        losses[self.name] += loss
 | 
						|
        if set_annotations:
 | 
						|
            docs = [eg.predicted for eg in examples]
 | 
						|
            self.set_annotations(docs, scores=scores)
 | 
						|
        return losses
 | 
						|
 | 
						|
    def rehearse(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        drop: float = 0.0,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | 
						|
        teach the current model to make predictions similar to an initial model,
 | 
						|
        to try to address the "catastrophic forgetting" problem. This feature is
 | 
						|
        experimental.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#rehearse
 | 
						|
        """
 | 
						|
        if losses is not None:
 | 
						|
            losses.setdefault(self.name, 0.0)
 | 
						|
        if self._rehearsal_model is None:
 | 
						|
            return losses
 | 
						|
        validate_examples(examples, "TextCategorizer.rehearse")
 | 
						|
        docs = [eg.predicted for eg in examples]
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update(docs)
 | 
						|
        target = self._rehearsal_model(examples)
 | 
						|
        gradient = scores - target
 | 
						|
        bp_scores(gradient)
 | 
						|
        if sgd is not None:
 | 
						|
            self.model.finish_update(sgd)
 | 
						|
        if losses is not None:
 | 
						|
            losses[self.name] += (gradient ** 2).sum()
 | 
						|
        return losses
 | 
						|
 | 
						|
    def _examples_to_truth(
 | 
						|
        self, examples: List[Example]
 | 
						|
    ) -> Tuple[numpy.ndarray, numpy.ndarray]:
 | 
						|
        truths = numpy.zeros((len(examples), len(self.labels)), dtype="f")
 | 
						|
        not_missing = numpy.ones((len(examples), len(self.labels)), dtype="f")
 | 
						|
        for i, eg in enumerate(examples):
 | 
						|
            for j, label in enumerate(self.labels):
 | 
						|
                if label in eg.reference.cats:
 | 
						|
                    truths[i, j] = eg.reference.cats[label]
 | 
						|
                else:
 | 
						|
                    not_missing[i, j] = 0.0
 | 
						|
        truths = self.model.ops.asarray(truths)
 | 
						|
        return truths, not_missing
 | 
						|
 | 
						|
    def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
 | 
						|
        """Find the loss and gradient of loss for the batch of documents and
 | 
						|
        their predicted scores.
 | 
						|
 | 
						|
        examples (Iterable[Examples]): The batch of examples.
 | 
						|
        scores: Scores representing the model's predictions.
 | 
						|
        RETUTNRS (Tuple[float, float]): The loss and the gradient.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
 | 
						|
        """
 | 
						|
        validate_examples(examples, "TextCategorizer.get_loss")
 | 
						|
        truths, not_missing = self._examples_to_truth(examples)
 | 
						|
        not_missing = self.model.ops.asarray(not_missing)
 | 
						|
        d_scores = (scores - truths) / scores.shape[0]
 | 
						|
        d_scores *= not_missing
 | 
						|
        mean_square_error = (d_scores ** 2).sum(axis=1).mean()
 | 
						|
        return float(mean_square_error), d_scores
 | 
						|
 | 
						|
    def add_label(self, label: str) -> int:
 | 
						|
        """Add a new label to the pipe.
 | 
						|
 | 
						|
        label (str): The label to add.
 | 
						|
        RETURNS (int): 0 if label is already present, otherwise 1.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#add_label
 | 
						|
        """
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label in self.labels:
 | 
						|
            return 0
 | 
						|
        self._allow_extra_label()
 | 
						|
        self.labels = tuple(list(self.labels) + [label])
 | 
						|
        return 1
 | 
						|
 | 
						|
    def begin_training(
 | 
						|
        self,
 | 
						|
        get_examples: Callable[[], Iterable[Example]],
 | 
						|
        *,
 | 
						|
        pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
    ) -> Optimizer:
 | 
						|
        """Initialize the pipe for training, using a representative set
 | 
						|
        of data examples.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects.
 | 
						|
        pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
 | 
						|
            components that this component is part of. Corresponds to
 | 
						|
            nlp.pipeline.
 | 
						|
        sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
 | 
						|
            create_optimizer if it doesn't exist.
 | 
						|
        RETURNS (thinc.api.Optimizer): The optimizer.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#begin_training
 | 
						|
        """
 | 
						|
        self._ensure_examples(get_examples)
 | 
						|
        subbatch = []  # Select a subbatch of examples to initialize the model
 | 
						|
        for example in islice(get_examples(), 10):
 | 
						|
            if len(subbatch) < 2:
 | 
						|
                subbatch.append(example)
 | 
						|
            for cat in example.y.cats:
 | 
						|
                self.add_label(cat)
 | 
						|
        doc_sample = [eg.reference for eg in subbatch]
 | 
						|
        label_sample, _ = self._examples_to_truth(subbatch)
 | 
						|
        self._require_labels()
 | 
						|
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        self.model.initialize(X=doc_sample, Y=label_sample)
 | 
						|
        if sgd is None:
 | 
						|
            sgd = self.create_optimizer()
 | 
						|
        return sgd
 | 
						|
 | 
						|
    def score(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        positive_label: Optional[str] = None,
 | 
						|
        **kwargs,
 | 
						|
    ) -> Dict[str, Any]:
 | 
						|
        """Score a batch of examples.
 | 
						|
 | 
						|
        examples (Iterable[Example]): The examples to score.
 | 
						|
        positive_label (str): Optional positive label.
 | 
						|
        RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/textcategorizer#score
 | 
						|
        """
 | 
						|
        validate_examples(examples, "TextCategorizer.score")
 | 
						|
        return Scorer.score_cats(
 | 
						|
            examples,
 | 
						|
            "cats",
 | 
						|
            labels=self.labels,
 | 
						|
            multi_label=self.model.attrs["multi_label"],
 | 
						|
            positive_label=positive_label,
 | 
						|
            threshold=self.cfg["threshold"],
 | 
						|
            **kwargs,
 | 
						|
        )
 |