mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			527 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			527 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
"""
 | 
						|
MALT-style dependency parser
 | 
						|
"""
 | 
						|
# coding: utf-8
 | 
						|
# cython: infer_types=True
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from collections import Counter
 | 
						|
import ujson
 | 
						|
 | 
						|
cimport cython
 | 
						|
cimport cython.parallel
 | 
						|
 | 
						|
import numpy.random
 | 
						|
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
from cpython.exc cimport PyErr_CheckSignals
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
from libc.stdlib cimport malloc, calloc, free
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
						|
from thinc.linalg cimport VecVec
 | 
						|
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
 | 
						|
from thinc.extra.eg cimport Example
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from preshed.maps cimport MapStruct
 | 
						|
from preshed.maps cimport map_get
 | 
						|
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport CONTEXT_SIZE
 | 
						|
from ._parse_features cimport fill_context
 | 
						|
from .stateclass cimport StateClass
 | 
						|
from ._state cimport StateC
 | 
						|
from .transition_system import OracleError
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
from ..structs cimport TokenC
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
from ..gold cimport GoldParse
 | 
						|
 | 
						|
 | 
						|
USE_FTRL = True
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
def get_templates(name):
 | 
						|
    pf = _parse_features
 | 
						|
    if name == 'ner':
 | 
						|
        return pf.ner
 | 
						|
    elif name == 'debug':
 | 
						|
        return pf.unigrams
 | 
						|
    elif name.startswith('embed'):
 | 
						|
        return (pf.words, pf.tags, pf.labels)
 | 
						|
    else:
 | 
						|
        return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
 | 
						|
                pf.tree_shape + pf.trigrams)
 | 
						|
 | 
						|
 | 
						|
cdef class ParserModel(AveragedPerceptron):
 | 
						|
    cdef int set_featuresC(self, atom_t* context, FeatureC* features,
 | 
						|
            const StateC* state) nogil:
 | 
						|
        fill_context(context, state)
 | 
						|
        nr_feat = self.extracter.set_features(features, context)
 | 
						|
        return nr_feat
 | 
						|
 | 
						|
    def update(self, Example eg, itn=0):
 | 
						|
        """
 | 
						|
        Does regression on negative cost. Sort of cute?
 | 
						|
        """
 | 
						|
        self.time += 1
 | 
						|
        cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
 | 
						|
        cdef int guess = eg.guess
 | 
						|
        if guess == best or best == -1:
 | 
						|
            return 0.0
 | 
						|
        cdef FeatureC feat
 | 
						|
        cdef int clas
 | 
						|
        cdef weight_t gradient
 | 
						|
        if USE_FTRL:
 | 
						|
            for feat in eg.c.features[:eg.c.nr_feat]:
 | 
						|
                for clas in range(eg.c.nr_class):
 | 
						|
                    if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]:
 | 
						|
                        gradient = eg.c.scores[clas] + eg.c.costs[clas]
 | 
						|
                        self.update_weight_ftrl(feat.key, clas, feat.value * gradient)
 | 
						|
        else:
 | 
						|
            for feat in eg.c.features[:eg.c.nr_feat]:
 | 
						|
                self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
 | 
						|
                self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
 | 
						|
        return eg.c.costs[guess]
 | 
						|
 | 
						|
    def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
 | 
						|
 | 
						|
        cdef StateClass stcls
 | 
						|
 | 
						|
        cdef class_t clas
 | 
						|
        self.time += 1
 | 
						|
        cdef atom_t[CONTEXT_SIZE] atoms
 | 
						|
        histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
 | 
						|
        if not histories:
 | 
						|
            return None
 | 
						|
        gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
 | 
						|
        for d_loss, history in histories:
 | 
						|
            stcls = StateClass.init(doc.c, doc.length)
 | 
						|
            moves.initialize_state(stcls.c)
 | 
						|
            for clas in history:
 | 
						|
                nr_feat = self.set_featuresC(atoms, features, stcls.c)
 | 
						|
                clas_grad = gradient[clas]
 | 
						|
                for feat in features[:nr_feat]:
 | 
						|
                    clas_grad[feat.key] += d_loss * feat.value
 | 
						|
                moves.c[clas].do(stcls.c, moves.c[clas].label)
 | 
						|
        cdef feat_t key
 | 
						|
        cdef weight_t d_feat
 | 
						|
        for clas, clas_grad in enumerate(gradient):
 | 
						|
            for key, d_feat in clas_grad.items():
 | 
						|
                if d_feat != 0:
 | 
						|
                    self.update_weight_ftrl(key, clas, d_feat)
 | 
						|
 | 
						|
 | 
						|
cdef class Parser:
 | 
						|
    """
 | 
						|
    Base class of the DependencyParser and EntityRecognizer.
 | 
						|
    """
 | 
						|
    @classmethod
 | 
						|
    def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
 | 
						|
        """
 | 
						|
        Load the statistical model from the supplied path.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            path (Path):
 | 
						|
                The path to load from.
 | 
						|
            vocab (Vocab):
 | 
						|
                The vocabulary. Must be shared by the documents to be processed.
 | 
						|
            require (bool):
 | 
						|
                Whether to raise an error if the files are not found.
 | 
						|
        Returns (Parser):
 | 
						|
            The newly constructed object.
 | 
						|
        """
 | 
						|
        with (path / 'config.json').open() as file_:
 | 
						|
            cfg = ujson.load(file_)
 | 
						|
        # TODO: remove this shim when we don't have to support older data
 | 
						|
        if 'labels' in cfg and 'actions' not in cfg:
 | 
						|
            cfg['actions'] = cfg.pop('labels')
 | 
						|
        # TODO: remove this shim when we don't have to support older data
 | 
						|
        for action_name, labels in dict(cfg.get('actions', {})).items():
 | 
						|
            # We need this to be sorted
 | 
						|
            if isinstance(labels, dict):
 | 
						|
                labels = list(sorted(labels.keys()))
 | 
						|
            cfg['actions'][action_name] = labels
 | 
						|
        self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
 | 
						|
        if (path / 'model').exists():
 | 
						|
            self.model.load(str(path / 'model'))
 | 
						|
        elif require:
 | 
						|
            raise IOError(
 | 
						|
                "Required file %s/model not found when loading" % str(path))
 | 
						|
        return self
 | 
						|
 | 
						|
    def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg):
 | 
						|
        """
 | 
						|
        Create a Parser.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            vocab (Vocab):
 | 
						|
                The vocabulary object. Must be shared with documents to be processed.
 | 
						|
            model (thinc.linear.AveragedPerceptron):
 | 
						|
                The statistical model.
 | 
						|
        Returns (Parser):
 | 
						|
            The newly constructed object.
 | 
						|
        """
 | 
						|
        if TransitionSystem is None:
 | 
						|
            TransitionSystem = self.TransitionSystem
 | 
						|
        self.vocab = vocab
 | 
						|
        cfg['actions'] = TransitionSystem.get_actions(**cfg)
 | 
						|
        self.moves = TransitionSystem(vocab.strings, cfg['actions'])
 | 
						|
        # TODO: Remove this when we no longer need to support old-style models
 | 
						|
        if isinstance(cfg.get('features'), basestring):
 | 
						|
            cfg['features'] = get_templates(cfg['features'])
 | 
						|
        elif 'features' not in cfg:
 | 
						|
            cfg['features'] = self.feature_templates
 | 
						|
 | 
						|
        self.model = ParserModel(cfg['features'])
 | 
						|
        self.model.l1_penalty = cfg.get('L1', 0.0)
 | 
						|
        self.model.learn_rate = cfg.get('learn_rate', 0.001)
 | 
						|
 | 
						|
        self.cfg = cfg
 | 
						|
        # TODO: This is a pretty hacky fix to the problem of adding more
 | 
						|
        # labels. The issue is they come in out of order, if labels are
 | 
						|
        # added during training
 | 
						|
        for label in cfg.get('extra_labels', []):
 | 
						|
            self.add_label(label)
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (Parser, (self.vocab, self.moves, self.model), None, None)
 | 
						|
 | 
						|
    def __call__(self, Doc tokens):
 | 
						|
        """
 | 
						|
        Apply the entity recognizer, setting the annotations onto the Doc object.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc): The document to be processed.
 | 
						|
        Returns:
 | 
						|
            None
 | 
						|
        """
 | 
						|
        cdef int nr_feat = self.model.nr_feat
 | 
						|
        with nogil:
 | 
						|
            status = self.parseC(tokens.c, tokens.length, nr_feat)
 | 
						|
        # Check for KeyboardInterrupt etc. Untested
 | 
						|
        PyErr_CheckSignals()
 | 
						|
        if status != 0:
 | 
						|
            raise ParserStateError(tokens)
 | 
						|
        self.moves.finalize_doc(tokens)
 | 
						|
 | 
						|
    def pipe(self, stream, int batch_size=1000, int n_threads=2):
 | 
						|
        """
 | 
						|
        Process a stream of documents.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            stream: The sequence of documents to process.
 | 
						|
            batch_size (int):
 | 
						|
                The number of documents to accumulate into a working set.
 | 
						|
            n_threads (int):
 | 
						|
                The number of threads with which to work on the buffer in parallel.
 | 
						|
        Yields (Doc): Documents, in order.
 | 
						|
        """
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
 | 
						|
        cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
 | 
						|
        cdef Doc doc
 | 
						|
        cdef int i
 | 
						|
        cdef int nr_feat = self.model.nr_feat
 | 
						|
        cdef int status
 | 
						|
        queue = []
 | 
						|
        for doc in stream:
 | 
						|
            doc_ptr[len(queue)] = doc.c
 | 
						|
            lengths[len(queue)] = doc.length
 | 
						|
            queue.append(doc)
 | 
						|
            if len(queue) == batch_size:
 | 
						|
                with nogil:
 | 
						|
                    for i in cython.parallel.prange(batch_size, num_threads=n_threads):
 | 
						|
                        status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
 | 
						|
                        if status != 0:
 | 
						|
                            with gil:
 | 
						|
                                raise ParserStateError(queue[i])
 | 
						|
                PyErr_CheckSignals()
 | 
						|
                for doc in queue:
 | 
						|
                    self.moves.finalize_doc(doc)
 | 
						|
                    yield doc
 | 
						|
                queue = []
 | 
						|
        batch_size = len(queue)
 | 
						|
        with nogil:
 | 
						|
            for i in cython.parallel.prange(batch_size, num_threads=n_threads):
 | 
						|
                status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
 | 
						|
                if status != 0:
 | 
						|
                    with gil:
 | 
						|
                        raise ParserStateError(queue[i])
 | 
						|
        PyErr_CheckSignals()
 | 
						|
        for doc in queue:
 | 
						|
            self.moves.finalize_doc(doc)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
 | 
						|
        state = new StateC(tokens, length)
 | 
						|
        # NB: This can change self.moves.n_moves!
 | 
						|
        # I think this causes memory errors if called by .pipe()
 | 
						|
        self.moves.initialize_state(state)
 | 
						|
        nr_class = self.moves.n_moves
 | 
						|
 | 
						|
        cdef ExampleC eg
 | 
						|
        eg.nr_feat = nr_feat
 | 
						|
        eg.nr_atom = CONTEXT_SIZE
 | 
						|
        eg.nr_class = nr_class
 | 
						|
        eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
 | 
						|
        eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
 | 
						|
        eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
 | 
						|
        eg.is_valid = <int*>calloc(sizeof(int), nr_class)
 | 
						|
        cdef int i
 | 
						|
        while not state.is_final():
 | 
						|
            eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
 | 
						|
            self.moves.set_valid(eg.is_valid, state)
 | 
						|
            self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
 | 
						|
 | 
						|
            guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
 | 
						|
            if guess < 0:
 | 
						|
                return 1
 | 
						|
 | 
						|
            action = self.moves.c[guess]
 | 
						|
 | 
						|
            action.do(state, action.label)
 | 
						|
            memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
 | 
						|
            for i in range(eg.nr_class):
 | 
						|
                eg.is_valid[i] = 1
 | 
						|
        self.moves.finalize_state(state)
 | 
						|
        for i in range(length):
 | 
						|
            tokens[i] = state._sent[i]
 | 
						|
        del state
 | 
						|
        free(eg.features)
 | 
						|
        free(eg.atoms)
 | 
						|
        free(eg.scores)
 | 
						|
        free(eg.is_valid)
 | 
						|
        return 0
 | 
						|
 | 
						|
    def update(self, Doc tokens, GoldParse gold, itn=0, double drop=0.0):
 | 
						|
        """
 | 
						|
        Update the statistical model.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc):
 | 
						|
                The example document for the update.
 | 
						|
            gold (GoldParse):
 | 
						|
                The gold-standard annotations, to calculate the loss.
 | 
						|
        Returns (float):
 | 
						|
            The loss on this example.
 | 
						|
        """
 | 
						|
        self.moves.preprocess_gold(gold)
 | 
						|
        cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
 | 
						|
        self.moves.initialize_state(stcls.c)
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef Example eg = Example(
 | 
						|
                nr_class=self.moves.n_moves,
 | 
						|
                nr_atom=CONTEXT_SIZE,
 | 
						|
                nr_feat=self.model.nr_feat)
 | 
						|
        cdef weight_t loss = 0
 | 
						|
        cdef Transition action
 | 
						|
        cdef double dropout_rate = self.cfg.get('dropout', drop)
 | 
						|
        while not stcls.is_final():
 | 
						|
            eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
 | 
						|
                                                    stcls.c)
 | 
						|
            dropout(eg.c.features, eg.c.nr_feat, dropout_rate)
 | 
						|
            self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
 | 
						|
            self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
 | 
						|
            guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
						|
            self.model.update(eg)
 | 
						|
 | 
						|
            action = self.moves.c[guess]
 | 
						|
            action.do(stcls.c, action.label)
 | 
						|
            loss += eg.costs[guess]
 | 
						|
            eg.fill_scores(0, eg.c.nr_class)
 | 
						|
            eg.fill_costs(0, eg.c.nr_class)
 | 
						|
            eg.fill_is_valid(1, eg.c.nr_class)
 | 
						|
 | 
						|
        self.moves.finalize_state(stcls.c)
 | 
						|
        return loss
 | 
						|
 | 
						|
    def step_through(self, Doc doc, GoldParse gold=None):
 | 
						|
        """
 | 
						|
        Set up a stepwise state, to introspect and control the transition sequence.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc): The document to step through.
 | 
						|
            gold (GoldParse): Optional gold parse
 | 
						|
        Returns (StepwiseState):
 | 
						|
            A state object, to step through the annotation process.
 | 
						|
        """
 | 
						|
        return StepwiseState(self, doc, gold=gold)
 | 
						|
 | 
						|
    def from_transition_sequence(self, Doc doc, sequence):
 | 
						|
        """Control the annotations on a document by specifying a transition sequence
 | 
						|
        to follow.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc): The document to annotate.
 | 
						|
            sequence: A sequence of action names, as unicode strings.
 | 
						|
        Returns: None
 | 
						|
        """
 | 
						|
        with self.step_through(doc) as stepwise:
 | 
						|
            for transition in sequence:
 | 
						|
                stepwise.transition(transition)
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        # Doesn't set label into serializer -- subclasses override it to do that.
 | 
						|
        for action in self.moves.action_types:
 | 
						|
            added = self.moves.add_action(action, label)
 | 
						|
            if added:
 | 
						|
                # Important that the labels be stored as a list! We need the
 | 
						|
                # order, or the model goes out of synch
 | 
						|
                self.cfg.setdefault('extra_labels', []).append(label)
 | 
						|
 | 
						|
 | 
						|
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
 | 
						|
    if prob <= 0 or prob >= 1.:
 | 
						|
        return 0
 | 
						|
    cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
 | 
						|
    cdef double* probs = &py_probs[0]
 | 
						|
    for i in range(nr_feat):
 | 
						|
        if probs[i] >= prob:
 | 
						|
            feats[i].value /= prob
 | 
						|
        else:
 | 
						|
            feats[i].value = 0.
 | 
						|
 | 
						|
 | 
						|
cdef class StepwiseState:
 | 
						|
    cdef readonly StateClass stcls
 | 
						|
    cdef readonly Example eg
 | 
						|
    cdef readonly Doc doc
 | 
						|
    cdef readonly GoldParse gold
 | 
						|
    cdef readonly Parser parser
 | 
						|
 | 
						|
    def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
 | 
						|
        self.parser = parser
 | 
						|
        self.doc = doc
 | 
						|
        if gold is not None:
 | 
						|
            self.gold = gold
 | 
						|
            self.parser.moves.preprocess_gold(self.gold)
 | 
						|
        else:
 | 
						|
            self.gold = GoldParse(doc)
 | 
						|
        self.stcls = StateClass.init(doc.c, doc.length)
 | 
						|
        self.parser.moves.initialize_state(self.stcls.c)
 | 
						|
        self.eg = Example(
 | 
						|
            nr_class=self.parser.moves.n_moves,
 | 
						|
            nr_atom=CONTEXT_SIZE,
 | 
						|
            nr_feat=self.parser.model.nr_feat)
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __exit__(self, type, value, traceback):
 | 
						|
        self.finish()
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_final(self):
 | 
						|
        return self.stcls.is_final()
 | 
						|
 | 
						|
    @property
 | 
						|
    def stack(self):
 | 
						|
        return self.stcls.stack
 | 
						|
 | 
						|
    @property
 | 
						|
    def queue(self):
 | 
						|
        return self.stcls.queue
 | 
						|
 | 
						|
    @property
 | 
						|
    def heads(self):
 | 
						|
        return [self.stcls.H(i) for i in range(self.stcls.c.length)]
 | 
						|
 | 
						|
    @property
 | 
						|
    def deps(self):
 | 
						|
        return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
 | 
						|
                for i in range(self.stcls.c.length)]
 | 
						|
 | 
						|
    @property
 | 
						|
    def costs(self):
 | 
						|
        """
 | 
						|
        Find the action-costs for the current state.
 | 
						|
        """
 | 
						|
        if not self.gold:
 | 
						|
            raise ValueError("Can't set costs: No GoldParse provided")
 | 
						|
        self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
 | 
						|
                self.stcls, self.gold)
 | 
						|
        costs = {}
 | 
						|
        for i in range(self.parser.moves.n_moves):
 | 
						|
            if not self.eg.c.is_valid[i]:
 | 
						|
                continue
 | 
						|
            transition = self.parser.moves.c[i]
 | 
						|
            name = self.parser.moves.move_name(transition.move, transition.label)
 | 
						|
            costs[name] = self.eg.c.costs[i]
 | 
						|
        return costs
 | 
						|
 | 
						|
    def predict(self):
 | 
						|
        self.eg.reset()
 | 
						|
        self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
 | 
						|
                                                            self.stcls.c)
 | 
						|
        self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
 | 
						|
        self.parser.model.set_scoresC(self.eg.c.scores,
 | 
						|
            self.eg.c.features, self.eg.c.nr_feat)
 | 
						|
 | 
						|
        cdef Transition action = self.parser.moves.c[self.eg.guess]
 | 
						|
        return self.parser.moves.move_name(action.move, action.label)
 | 
						|
 | 
						|
    def transition(self, action_name=None):
 | 
						|
        if action_name is None:
 | 
						|
            action_name = self.predict()
 | 
						|
        moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
 | 
						|
        if action_name == '_':
 | 
						|
            action_name = self.predict()
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        elif action_name == 'L' or action_name == 'R':
 | 
						|
            self.predict()
 | 
						|
            move = moves[action_name]
 | 
						|
            clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
 | 
						|
                                 self.eg.c.nr_class)
 | 
						|
            action = self.parser.moves.c[clas]
 | 
						|
        else:
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        action.do(self.stcls.c, action.label)
 | 
						|
 | 
						|
    def finish(self):
 | 
						|
        if self.stcls.is_final():
 | 
						|
            self.parser.moves.finalize_state(self.stcls.c)
 | 
						|
        self.doc.set_parse(self.stcls.c._sent)
 | 
						|
        self.parser.moves.finalize_doc(self.doc)
 | 
						|
 | 
						|
 | 
						|
class ParserStateError(ValueError):
 | 
						|
    def __init__(self, doc):
 | 
						|
        ValueError.__init__(self,
 | 
						|
            "Error analysing doc -- no valid actions available. This should "
 | 
						|
            "never happen, so please report the error on the issue tracker. "
 | 
						|
            "Here's the thread to do so --- reopen it if it's closed:\n"
 | 
						|
            "https://github.com/spacy-io/spaCy/issues/429\n"
 | 
						|
            "Please include the text that the parser failed on, which is:\n"
 | 
						|
            "%s" % repr(doc.text))
 | 
						|
 | 
						|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
 | 
						|
    cdef int best = -1
 | 
						|
    for i in range(n):
 | 
						|
        if costs[i] <= 0:
 | 
						|
            if best == -1 or scores[i] > scores[best]:
 | 
						|
                best = i
 | 
						|
    return best
 | 
						|
 | 
						|
 | 
						|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
 | 
						|
                       int nr_class) except -1:
 | 
						|
    cdef weight_t score = 0
 | 
						|
    cdef int mode = -1
 | 
						|
    cdef int i
 | 
						|
    for i in range(nr_class):
 | 
						|
        if actions[i].move == move and (mode == -1 or scores[i] >= score):
 | 
						|
            mode = i
 | 
						|
            score = scores[i]
 | 
						|
    return mode
 |