spaCy/examples/training/create_kb.py
Sofie Van Landeghem cafe94ee04 Update NEL examples and documentation (#5370)
* simplify creation of KB by skipping dim reduction

* small fixes to train EL example script

* add KB creation and NEL training example scripts to example section

* update descriptions of example scripts in the documentation

* moving wiki_entity_linking folder from bin to projects

* remove test for wiki NEL functionality that is being moved
# Conflicts:
#	bin/wiki_entity_linking/wikipedia_processor.py
2020-04-30 09:50:02 +02:00

115 lines
3.6 KiB
Python

#!/usr/bin/env python
# coding: utf8
"""Example of defining a knowledge base in spaCy,
which is needed to implement entity linking functionality.
For more details, see the documentation:
* Knowledge base: https://spacy.io/api/kb
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
Compatible with: spaCy v2.2.4
Last tested with: v2.2.4
"""
from __future__ import unicode_literals, print_function
import plac
from pathlib import Path
from spacy.vocab import Vocab
import spacy
from spacy.kb import KnowledgeBase
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
@plac.annotations(
model=("Model name, should have pretrained word embeddings", "positional", None, str),
output_dir=("Optional output directory", "option", "o", Path),
)
def main(model=None, output_dir=None):
"""Load the model and create the KB with pre-defined entity encodings.
If an output_dir is provided, the KB will be stored there in a file 'kb'.
The updated vocab will also be written to a directory in the output_dir."""
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
# check the length of the nlp vectors
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
raise ValueError(
"The `nlp` object should have access to pretrained word vectors, "
" cf. https://spacy.io/usage/models#languages."
)
# You can change the dimension of vectors in your KB by using an encoder that changes the dimensionality.
# For simplicity, we'll just use the original vector dimension here instead.
vectors_dim = nlp.vocab.vectors.shape[1]
kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=vectors_dim)
# set up the data
entity_ids = []
descr_embeddings = []
freqs = []
for key, value in ENTITIES.items():
desc, freq = value
entity_ids.append(key)
descr_embeddings.append(nlp(desc).vector)
freqs.append(freq)
# set the entities, can also be done by calling `kb.add_entity` for each entity
kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=descr_embeddings)
# adding aliases, the entities need to be defined in the KB beforehand
kb.add_alias(
alias="Russ Cochran",
entities=["Q2146908", "Q7381115"],
probabilities=[0.24, 0.7], # the sum of these probabilities should not exceed 1
)
# test the trained model
print()
_print_kb(kb)
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
kb_path = str(output_dir / "kb")
kb.dump(kb_path)
print()
print("Saved KB to", kb_path)
vocab_path = output_dir / "vocab"
kb.vocab.to_disk(vocab_path)
print("Saved vocab to", vocab_path)
print()
# test the saved model
# always reload a knowledge base with the same vocab instance!
print("Loading vocab from", vocab_path)
print("Loading KB from", kb_path)
vocab2 = Vocab().from_disk(vocab_path)
kb2 = KnowledgeBase(vocab=vocab2)
kb2.load_bulk(kb_path)
print()
_print_kb(kb2)
def _print_kb(kb):
print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings())
print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings())
if __name__ == "__main__":
plac.call(main)
# Expected output:
# 2 kb entities: ['Q2146908', 'Q7381115']
# 1 kb aliases: ['Russ Cochran']