mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-03 22:06:37 +03:00
101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
# encoding: utf8
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
from .stop_words import STOP_WORDS
|
|
from .tag_map import TAG_MAP
|
|
from ...attrs import LANG
|
|
from ...language import Language
|
|
from ...tokens import Doc
|
|
from ...compat import copy_reg
|
|
from ...util import DummyTokenizer
|
|
|
|
|
|
def try_mecab_import():
|
|
try:
|
|
from natto import MeCab
|
|
|
|
return MeCab
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Korean support requires [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
|
|
"[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
|
|
"and [natto-py](https://github.com/buruzaemon/natto-py)"
|
|
)
|
|
|
|
|
|
# fmt: on
|
|
|
|
|
|
def check_spaces(text, tokens):
|
|
prev_end = -1
|
|
start = 0
|
|
for token in tokens:
|
|
idx = text.find(token, start)
|
|
if prev_end > 0:
|
|
yield prev_end != idx
|
|
prev_end = idx + len(token)
|
|
start = prev_end
|
|
if start > 0:
|
|
yield False
|
|
|
|
|
|
class KoreanTokenizer(DummyTokenizer):
|
|
def __init__(self, cls, nlp=None):
|
|
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
|
self.Tokenizer = try_mecab_import()
|
|
|
|
def __call__(self, text):
|
|
dtokens = list(self.detailed_tokens(text))
|
|
surfaces = [dt["surface"] for dt in dtokens]
|
|
doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
|
|
for token, dtoken in zip(doc, dtokens):
|
|
first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
|
|
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
|
token.lemma_ = dtoken["lemma"]
|
|
doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
|
|
return doc
|
|
|
|
def detailed_tokens(self, text):
|
|
# 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3],
|
|
# 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], *
|
|
with self.Tokenizer("-F%f[0],%f[7]") as tokenizer:
|
|
for node in tokenizer.parse(text, as_nodes=True):
|
|
if node.is_eos():
|
|
break
|
|
surface = node.surface
|
|
feature = node.feature
|
|
tag, _, expr = feature.partition(",")
|
|
lemma, _, remainder = expr.partition("/")
|
|
if lemma == "*":
|
|
lemma = surface
|
|
yield {"surface": surface, "lemma": lemma, "tag": tag}
|
|
|
|
|
|
class KoreanDefaults(Language.Defaults):
|
|
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
|
lex_attr_getters[LANG] = lambda _text: "ko"
|
|
stop_words = STOP_WORDS
|
|
tag_map = TAG_MAP
|
|
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
|
|
|
@classmethod
|
|
def create_tokenizer(cls, nlp=None):
|
|
return KoreanTokenizer(cls, nlp)
|
|
|
|
|
|
class Korean(Language):
|
|
lang = "ko"
|
|
Defaults = KoreanDefaults
|
|
|
|
def make_doc(self, text):
|
|
return self.tokenizer(text)
|
|
|
|
|
|
def pickle_korean(instance):
|
|
return Korean, tuple()
|
|
|
|
|
|
copy_reg.pickle(Korean, pickle_korean)
|
|
|
|
__all__ = ["Korean"]
|