mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 20:28:20 +03:00
148 lines
4.7 KiB
Plaintext
148 lines
4.7 KiB
Plaintext
//- 💫 DOCS > API > SPACY
|
|
|
|
include ../../_includes/_mixins
|
|
|
|
+h(2, "load") spacy.load
|
|
+tag function
|
|
+tag-model
|
|
|
|
p
|
|
| Load a model via its #[+a("/docs/usage/models#usage") shortcut link],
|
|
| the name of an installed
|
|
| #[+a("/docs/usage/saving-loading#generating") model package], a unicode
|
|
| path or a #[code Path]-like object. spaCy will try resolving the load
|
|
| argument in this order. If a model is loaded from a shortcut link or
|
|
| package name, spaCy will assume it's a Python package and import it and
|
|
| call the model's own #[code load()] method. If a model is loaded from a
|
|
| path, spaCy will assume it's a data directory, read the language and
|
|
| pipeline settings off the meta.json and initialise the #[code Language]
|
|
| class. The data will be loaded in via
|
|
| #[+api("language#from_disk") #[code Language.from_disk()]].
|
|
|
|
+aside-code("Example").
|
|
nlp = spacy.load('en') # shortcut link
|
|
nlp = spacy.load('en_core_web_sm') # package
|
|
nlp = spacy.load('/path/to/en') # unicode path
|
|
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
|
|
|
|
nlp = spacy.load('en', disable=['parser', 'tagger'])
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code name]
|
|
+cell unicode or #[code Path]
|
|
+cell Model to load, i.e. shortcut link, package name or path.
|
|
|
|
+row
|
|
+cell #[code disable]
|
|
+cell list
|
|
+cell
|
|
| Names of pipeline components to
|
|
| #[+a("/docs/usage/language-processing-pipeline#disabling") disable].
|
|
|
|
+footrow
|
|
+cell returns
|
|
+cell #[code Language]
|
|
+cell A #[code Language] object with the loaded model.
|
|
|
|
+infobox("⚠️ Deprecation note")
|
|
.o-block
|
|
| As of spaCy 2.0, the #[code path] keyword argument is deprecated. spaCy
|
|
| will also raise an error if no model could be loaded and never just
|
|
| return an empty #[code Language] object. If you need a blank language,
|
|
| you need to import it explicitly (#[code from spacy.lang.en import English])
|
|
| or use #[+api("util#get_lang_class") #[code util.get_lang_class]].
|
|
|
|
+code-new nlp = spacy.load('/model')
|
|
+code-old nlp = spacy.load('en', path='/model')
|
|
|
|
+h(2, "info") spacy.info
|
|
+tag function
|
|
|
|
p
|
|
| The same as the #[+api("cli#info") #[code info] command]. Pretty-print
|
|
| information about your installation, models and local setup from within
|
|
| spaCy. To get the model meta data as a dictionary instead, you can
|
|
| use the #[code meta] attribute on your #[code nlp] object with a
|
|
| loaded model, e.g. #[code nlp['meta']].
|
|
|
|
+aside-code("Example").
|
|
spacy.info()
|
|
spacy.info('en')
|
|
spacy.info('de', markdown=True)
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code model]
|
|
+cell unicode
|
|
+cell A model, i.e. shortcut link, package name or path (optional).
|
|
|
|
+row
|
|
+cell #[code markdown]
|
|
+cell bool
|
|
+cell Print information as Markdown.
|
|
|
|
|
|
+h(2, "explain") spacy.explain
|
|
+tag function
|
|
|
|
p
|
|
| Get a description for a given POS tag, dependency label or entity type.
|
|
| For a list of available terms, see
|
|
| #[+src(gh("spacy", "spacy/glossary.py")) glossary.py].
|
|
|
|
+aside-code("Example").
|
|
spacy.explain('NORP')
|
|
# Nationalities or religious or political groups
|
|
|
|
doc = nlp(u'Hello world')
|
|
for word in doc:
|
|
print(word.text, word.tag_, spacy.explain(word.tag_))
|
|
# Hello UH interjection
|
|
# world NN noun, singular or mass
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code term]
|
|
+cell unicode
|
|
+cell Term to explain.
|
|
|
|
+footrow
|
|
+cell returns
|
|
+cell unicode
|
|
+cell The explanation, or #[code None] if not found in the glossary.
|
|
|
|
+h(2, "set_factory") spacy.set_factory
|
|
+tag function
|
|
+tag-new(2)
|
|
|
|
p
|
|
| Set a factory that returns a custom
|
|
| #[+a("/docs/usage/language-processing-pipeline") processing pipeline]
|
|
| component. Factories are useful for creating stateful components, especially ones which depend on shared data.
|
|
|
|
+aside-code("Example").
|
|
def my_factory(vocab):
|
|
def my_component(doc):
|
|
return doc
|
|
return my_component
|
|
|
|
spacy.set_factory('my_factory', my_factory)
|
|
nlp = Language(pipeline=['my_factory'])
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code factory_id]
|
|
+cell unicode
|
|
+cell
|
|
| Unique name of factory. If added to a new pipeline, spaCy will
|
|
| look up the factory for this ID and use it to create the
|
|
| component.
|
|
|
|
+row
|
|
+cell #[code factory]
|
|
+cell callable
|
|
+cell
|
|
| Callable that takes a #[code Vocab] object and returns a pipeline
|
|
| component.
|