mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	| .. | ||
| __init__.py | ||
| entity_linker_evaluation.py | ||
| kb_creator.py | ||
| README.md | ||
| train_descriptions.py | ||
| wiki_io.py | ||
| wiki_namespaces.py | ||
| wikidata_pretrain_kb.py | ||
| wikidata_processor.py | ||
| wikidata_train_entity_linker.py | ||
| wikipedia_processor.py | ||
Entity Linking with Wikipedia and Wikidata
Step 1: Create a Knowledge Base (KB) and training data
Run  wikidata_pretrain_kb.py
- This takes as input the locations of a Wikipedia and a Wikidata dump, and produces a KB directory + training file
- WikiData: get latest-all.json.bz2from https://dumps.wikimedia.org/wikidatawiki/entities/
- Wikipedia: get enwiki-latest-pages-articles-multistream.xml.bz2from https://dumps.wikimedia.org/enwiki/latest/ (or for any other language)
 
- WikiData: get 
- You can set the filtering parameters for KB construction:
- max_per_alias(- -a): (max) number of candidate entities in the KB per alias/synonym
- min_freq(- -f): threshold of number of times an entity should occur in the corpus to be included in the KB
- min_pair(- -c): threshold of number of times an entity+alias combination should occur in the corpus to be included in the KB
 
- Further parameters to set:
- descriptions_from_wikipedia(- -wp): whether to parse descriptions from Wikipedia (- True) or Wikidata (- False)
- entity_vector_length(- -v): length of the pre-trained entity description vectors
- lang(- -la): language for which to fetch Wikidata information (as the dump contains all languages)
 
Quick testing and rerunning:
- When trying out the pipeline for a quick test, set limit_prior(-lp),limit_train(-lt) and/orlimit_wd(-lw) to read only parts of the dumps instead of everything.- e.g. set -lt 20000 -lp 2000 -lw 3000 -f 1
 
- e.g. set 
- If you only want to (re)run certain parts of the pipeline, just remove the corresponding files and they will be recalculated or reparsed.
Step 2: Train an Entity Linking model
Run  wikidata_train_entity_linker.py
- This takes the KB directory produced by Step 1, and trains an Entity Linking model
- Specify the output directory (-o) in which the final, trained model will be saved
- You can set the learning parameters for the EL training:
- epochs(- -e): number of training iterations
- dropout(- -p): dropout rate
- lr(- -n): learning rate
- l2(- -r): L2 regularization
 
- Specify the number of training and dev testing articles with train_articles(-t) anddev_articles(-d) respectively- If not specified, the full dataset will be processed - this may take a LONG time !
 
- Further parameters to set:
- labels_discard(- -l): NER label types to discard during training