mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
260 lines
7.7 KiB
Python
260 lines
7.7 KiB
Python
from os import path
|
|
from warnings import warn
|
|
|
|
try:
|
|
import ujson as json
|
|
except ImportError:
|
|
import json
|
|
|
|
from .tokenizer import Tokenizer
|
|
from .vocab import Vocab
|
|
from .syntax.parser import Parser
|
|
from .tagger import Tagger
|
|
from .matcher import Matcher
|
|
from .serialize.packer import Packer
|
|
from ._ml import Model
|
|
from . import attrs
|
|
from . import orth
|
|
from .syntax.ner import BiluoPushDown
|
|
from .syntax.arc_eager import ArcEager
|
|
|
|
from .attrs import TAG, DEP, ENT_IOB, ENT_TYPE, HEAD
|
|
|
|
|
|
class Language(object):
|
|
@staticmethod
|
|
def lower(string):
|
|
return string.lower()
|
|
|
|
@staticmethod
|
|
def norm(string):
|
|
return string
|
|
|
|
@staticmethod
|
|
def shape(string):
|
|
return orth.word_shape(string)
|
|
|
|
@staticmethod
|
|
def prefix(string):
|
|
return string[0]
|
|
|
|
@staticmethod
|
|
def suffix(string):
|
|
return string[-3:]
|
|
|
|
@staticmethod
|
|
def prob(string):
|
|
return -30
|
|
|
|
@staticmethod
|
|
def cluster(string):
|
|
return 0
|
|
|
|
@staticmethod
|
|
def is_alpha(string):
|
|
return orth.is_alpha(string)
|
|
|
|
@staticmethod
|
|
def is_ascii(string):
|
|
return orth.is_ascii(string)
|
|
|
|
@staticmethod
|
|
def is_digit(string):
|
|
return string.isdigit()
|
|
|
|
@staticmethod
|
|
def is_lower(string):
|
|
return orth.is_lower(string)
|
|
|
|
@staticmethod
|
|
def is_punct(string):
|
|
return orth.is_punct(string)
|
|
|
|
@staticmethod
|
|
def is_space(string):
|
|
return string.isspace()
|
|
|
|
@staticmethod
|
|
def is_title(string):
|
|
return orth.is_title(string)
|
|
|
|
@staticmethod
|
|
def is_upper(string):
|
|
return orth.is_upper(string)
|
|
|
|
@staticmethod
|
|
def like_url(string):
|
|
return orth.like_url(string)
|
|
|
|
@staticmethod
|
|
def like_number(string):
|
|
return orth.like_number(string)
|
|
|
|
@staticmethod
|
|
def like_email(string):
|
|
return orth.like_email(string)
|
|
|
|
@staticmethod
|
|
def is_stop(string):
|
|
return 0
|
|
|
|
@classmethod
|
|
def default_lex_attrs(cls, data_dir=None):
|
|
return {
|
|
attrs.LOWER: cls.lower,
|
|
attrs.NORM: cls.norm,
|
|
attrs.SHAPE: cls.shape,
|
|
attrs.PREFIX: cls.prefix,
|
|
attrs.SUFFIX: cls.suffix,
|
|
attrs.CLUSTER: cls.cluster,
|
|
attrs.PROB: lambda string: -10.0,
|
|
|
|
attrs.IS_ALPHA: cls.is_alpha,
|
|
attrs.IS_ASCII: cls.is_ascii,
|
|
attrs.IS_DIGIT: cls.is_digit,
|
|
attrs.IS_LOWER: cls.is_lower,
|
|
attrs.IS_PUNCT: cls.is_punct,
|
|
attrs.IS_SPACE: cls.is_space,
|
|
attrs.IS_TITLE: cls.is_title,
|
|
attrs.IS_UPPER: cls.is_upper,
|
|
attrs.LIKE_URL: cls.like_url,
|
|
attrs.LIKE_NUM: cls.like_number,
|
|
attrs.LIKE_EMAIL: cls.like_email,
|
|
attrs.IS_STOP: cls.is_stop,
|
|
attrs.IS_OOV: lambda string: True
|
|
}
|
|
|
|
@classmethod
|
|
def default_dep_labels(cls):
|
|
return {0: {'ROOT': True}}
|
|
|
|
@classmethod
|
|
def default_ner_labels(cls):
|
|
return {0: {'PER': True, 'LOC': True, 'ORG': True, 'MISC': True}}
|
|
|
|
@classmethod
|
|
def default_data_dir(cls):
|
|
return path.join(path.dirname(__file__), 'data')
|
|
|
|
@classmethod
|
|
def default_vocab(cls, data_dir=None, get_lex_attr=None):
|
|
if data_dir is None:
|
|
data_dir = cls.default_data_dir()
|
|
if get_lex_attr is None:
|
|
get_lex_attr = cls.default_lex_attrs(data_dir)
|
|
return Vocab.from_dir(
|
|
path.join(data_dir, 'vocab'),
|
|
get_lex_attr=get_lex_attr)
|
|
|
|
@classmethod
|
|
def default_tokenizer(cls, vocab, data_dir):
|
|
if path.exists(data_dir):
|
|
return Tokenizer.from_dir(vocab, data_dir)
|
|
else:
|
|
return Tokenizer(vocab, {}, None, None, None)
|
|
|
|
@classmethod
|
|
def default_tagger(cls, vocab, data_dir):
|
|
if path.exists(data_dir):
|
|
return Tagger.from_dir(data_dir, vocab)
|
|
else:
|
|
return None
|
|
|
|
@classmethod
|
|
def default_parser(cls, vocab, data_dir):
|
|
if path.exists(data_dir):
|
|
return Parser.from_dir(data_dir, vocab.strings, ArcEager)
|
|
else:
|
|
return None
|
|
|
|
@classmethod
|
|
def default_entity(cls, vocab, data_dir):
|
|
if path.exists(data_dir):
|
|
return Parser.from_dir(data_dir, vocab.strings, BiluoPushDown)
|
|
else:
|
|
return None
|
|
|
|
@classmethod
|
|
def default_matcher(cls, vocab, data_dir):
|
|
if path.exists(data_dir):
|
|
return Matcher.from_dir(data_dir, vocab)
|
|
else:
|
|
return None
|
|
|
|
def __init__(self, data_dir=None, vocab=None, tokenizer=None, tagger=None,
|
|
parser=None, entity=None, matcher=None, serializer=None,
|
|
load_vectors=True):
|
|
if load_vectors is not True:
|
|
warn("load_vectors is deprecated", DeprecationWarning)
|
|
if data_dir in (None, True):
|
|
data_dir = self.default_data_dir()
|
|
if vocab in (None, True):
|
|
vocab = self.default_vocab(data_dir)
|
|
if tokenizer in (None, True):
|
|
tokenizer = self.default_tokenizer(vocab, data_dir=path.join(data_dir, 'tokenizer'))
|
|
if tagger in (None, True):
|
|
tagger = self.default_tagger(vocab, data_dir=path.join(data_dir, 'pos'))
|
|
if entity in (None, True):
|
|
entity = self.default_entity(vocab, data_dir=path.join(data_dir, 'ner'))
|
|
if parser in (None, True):
|
|
parser = self.default_parser(vocab, data_dir=path.join(data_dir, 'deps'))
|
|
if matcher in (None, True):
|
|
matcher = self.default_matcher(vocab, data_dir=data_dir)
|
|
self.vocab = vocab
|
|
self.tokenizer = tokenizer
|
|
self.tagger = tagger
|
|
self.parser = parser
|
|
self.entity = entity
|
|
self.matcher = matcher
|
|
|
|
def __reduce__(self):
|
|
return (self.__class__,
|
|
(None, self.vocab, self.tokenizer, self.tagger, self.parser,
|
|
self.entity, self.matcher, None),
|
|
None, None)
|
|
|
|
def __call__(self, text, tag=True, parse=True, entity=True):
|
|
"""Apply the pipeline to some text. The text can span multiple sentences,
|
|
and can contain arbtrary whitespace. Alignment into the original string
|
|
is preserved.
|
|
|
|
Args:
|
|
text (unicode): The text to be processed.
|
|
|
|
Returns:
|
|
tokens (spacy.tokens.Doc):
|
|
|
|
>>> from spacy.en import English
|
|
>>> nlp = English()
|
|
>>> tokens = nlp('An example sentence. Another example sentence.')
|
|
>>> tokens[0].orth_, tokens[0].head.tag_
|
|
('An', 'NN')
|
|
"""
|
|
tokens = self.tokenizer(text)
|
|
if self.tagger and tag:
|
|
self.tagger(tokens)
|
|
if self.matcher and entity:
|
|
self.matcher(tokens)
|
|
if self.parser and parse:
|
|
self.parser(tokens)
|
|
if self.entity and entity:
|
|
self.entity(tokens)
|
|
return tokens
|
|
|
|
def end_training(self, data_dir=None):
|
|
if data_dir is None:
|
|
data_dir = self.data_dir
|
|
self.parser.model.end_training(path.join(data_dir, 'deps', 'model'))
|
|
self.entity.model.end_training(path.join(data_dir, 'ner', 'model'))
|
|
self.tagger.model.end_training(path.join(data_dir, 'pos', 'model'))
|
|
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
|
|
|
|
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
|
|
file_.write(
|
|
json.dumps([
|
|
(TAG, list(self.tagger.freqs[TAG].items())),
|
|
(DEP, list(self.parser.moves.freqs[DEP].items())),
|
|
(ENT_IOB, list(self.entity.moves.freqs[ENT_IOB].items())),
|
|
(ENT_TYPE, list(self.entity.moves.freqs[ENT_TYPE].items())),
|
|
(HEAD, list(self.parser.moves.freqs[HEAD].items()))]))
|