mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from ....tokens.doc import Doc
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def en_lemmatizer(EN):
 | 
						|
    return EN.Defaults.create_lemmatizer()
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_doc_lemmatization(EN):
 | 
						|
    doc = Doc(EN.vocab, words=['bleed'])
 | 
						|
    doc[0].tag_ = 'VBP'
 | 
						|
    assert doc[0].lemma_ == 'bleed'
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
@pytest.mark.parametrize('text,lemmas', [("aardwolves", ["aardwolf"]),
 | 
						|
                                         ("aardwolf", ["aardwolf"]),
 | 
						|
                                         ("planets", ["planet"]),
 | 
						|
                                         ("ring", ["ring"]),
 | 
						|
                                         ("axes", ["axis", "axe", "ax"])])
 | 
						|
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
 | 
						|
    assert en_lemmatizer.noun(text) == set(lemmas)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
@pytest.mark.parametrize('text,lemmas', [("bleed", ["bleed"]),
 | 
						|
                                         ("feed", ["feed"]),
 | 
						|
                                         ("need", ["need"]),
 | 
						|
                                         ("ring", ["ring"]),
 | 
						|
                                         ("axes", ["axis", "axe", "ax"])])
 | 
						|
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
 | 
						|
    assert en_lemmatizer.noun(text) == set(lemmas)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_base_forms(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.noun('dive', {'number': 'sing'}) == set(['dive'])
 | 
						|
    assert en_lemmatizer.noun('dive', {'number': 'plur'}) == set(['diva'])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_base_form_verb(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.verb('saw', {'verbform': 'past'}) == set(['see'])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_punct(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.punct('“') == set(['"'])
 | 
						|
    assert en_lemmatizer.punct('“') == set(['"'])
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_lemma_assignment(EN):
 | 
						|
    text = "Bananas in pyjamas are geese."
 | 
						|
    doc = EN.make_doc(text)
 | 
						|
    EN.tagger(doc)
 | 
						|
    assert all(t.lemma_ != '' for t in doc)
 |