mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
354 lines
14 KiB
Python
354 lines
14 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import re
|
|
import bz2
|
|
import datetime
|
|
|
|
from spacy.gold import GoldParse
|
|
from bin.wiki_entity_linking import kb_creator
|
|
|
|
"""
|
|
Process Wikipedia interlinks to generate a training dataset for the EL algorithm.
|
|
Gold-standard entities are stored in one file in standoff format (by character offset).
|
|
"""
|
|
|
|
ENTITY_FILE = "gold_entities.csv"
|
|
|
|
|
|
def create_training(wikipedia_input, entity_def_input, training_output):
|
|
wp_to_id = kb_creator.get_entity_to_id(entity_def_input)
|
|
_process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None)
|
|
|
|
|
|
def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None):
|
|
"""
|
|
Read the XML wikipedia data to parse out training data:
|
|
raw text data + positive instances
|
|
"""
|
|
title_regex = re.compile(r'(?<=<title>).*(?=</title>)')
|
|
id_regex = re.compile(r'(?<=<id>)\d*(?=</id>)')
|
|
|
|
read_ids = set()
|
|
entityfile_loc = training_output / ENTITY_FILE
|
|
with open(entityfile_loc, mode="w", encoding='utf8') as entityfile:
|
|
# write entity training header file
|
|
_write_training_entity(outputfile=entityfile,
|
|
article_id="article_id",
|
|
alias="alias",
|
|
entity="WD_id",
|
|
start="start",
|
|
end="end")
|
|
|
|
with bz2.open(wikipedia_input, mode='rb') as file:
|
|
line = file.readline()
|
|
cnt = 0
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
while line and (not limit or cnt < limit):
|
|
if cnt % 1000000 == 0:
|
|
print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump")
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
if clean_line == "<revision>":
|
|
reading_revision = True
|
|
elif clean_line == "</revision>":
|
|
reading_revision = False
|
|
|
|
# Start reading new page
|
|
if clean_line == "<page>":
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
|
|
# finished reading this page
|
|
elif clean_line == "</page>":
|
|
if article_id:
|
|
try:
|
|
_process_wp_text(wp_to_id, entityfile, article_id, article_title, article_text.strip(),
|
|
training_output)
|
|
except Exception as e:
|
|
print("Error processing article", article_id, article_title, e)
|
|
else:
|
|
print("Done processing a page, but couldn't find an article_id ?", article_title)
|
|
article_text = ""
|
|
article_title = None
|
|
article_id = None
|
|
reading_text = False
|
|
reading_revision = False
|
|
|
|
# start reading text within a page
|
|
if "<text" in clean_line:
|
|
reading_text = True
|
|
|
|
if reading_text:
|
|
article_text += " " + clean_line
|
|
|
|
# stop reading text within a page (we assume a new page doesn't start on the same line)
|
|
if "</text" in clean_line:
|
|
reading_text = False
|
|
|
|
# read the ID of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
ids = id_regex.search(clean_line)
|
|
if ids:
|
|
article_id = ids[0]
|
|
if article_id in read_ids:
|
|
print("Found duplicate article ID", article_id, clean_line) # This should never happen ...
|
|
read_ids.add(article_id)
|
|
|
|
# read the title of this article (outside the revision portion of the document)
|
|
if not reading_revision:
|
|
titles = title_regex.search(clean_line)
|
|
if titles:
|
|
article_title = titles[0].strip()
|
|
|
|
line = file.readline()
|
|
cnt += 1
|
|
|
|
|
|
text_regex = re.compile(r'(?<=<text xml:space=\"preserve\">).*(?=</text)')
|
|
|
|
|
|
def _process_wp_text(wp_to_id, entityfile, article_id, article_title, article_text, training_output):
|
|
found_entities = False
|
|
|
|
# ignore meta Wikipedia pages
|
|
if article_title.startswith("Wikipedia:"):
|
|
return
|
|
|
|
# remove the text tags
|
|
text = text_regex.search(article_text).group(0)
|
|
|
|
# stop processing if this is a redirect page
|
|
if text.startswith("#REDIRECT"):
|
|
return
|
|
|
|
# get the raw text without markup etc, keeping only interwiki links
|
|
clean_text = _get_clean_wp_text(text)
|
|
|
|
# read the text char by char to get the right offsets for the interwiki links
|
|
final_text = ""
|
|
open_read = 0
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
for index, letter in enumerate(clean_text):
|
|
if letter == '[':
|
|
open_read += 1
|
|
elif letter == ']':
|
|
open_read -= 1
|
|
elif letter == '|':
|
|
if reading_text:
|
|
final_text += letter
|
|
# switch from reading entity to mention in the [[entity|mention]] pattern
|
|
elif reading_entity:
|
|
reading_text = False
|
|
reading_entity = False
|
|
reading_mention = True
|
|
else:
|
|
reading_special_case = True
|
|
else:
|
|
if reading_entity:
|
|
entity_buffer += letter
|
|
elif reading_mention:
|
|
mention_buffer += letter
|
|
elif reading_text:
|
|
final_text += letter
|
|
else:
|
|
raise ValueError("Not sure at point", clean_text[index-2:index+2])
|
|
|
|
if open_read > 2:
|
|
reading_special_case = True
|
|
|
|
if open_read == 2 and reading_text:
|
|
reading_text = False
|
|
reading_entity = True
|
|
reading_mention = False
|
|
|
|
# we just finished reading an entity
|
|
if open_read == 0 and not reading_text:
|
|
if '#' in entity_buffer or entity_buffer.startswith(':'):
|
|
reading_special_case = True
|
|
# Ignore cases with nested structures like File: handles etc
|
|
if not reading_special_case:
|
|
if not mention_buffer:
|
|
mention_buffer = entity_buffer
|
|
start = len(final_text)
|
|
end = start + len(mention_buffer)
|
|
qid = wp_to_id.get(entity_buffer, None)
|
|
if qid:
|
|
_write_training_entity(outputfile=entityfile,
|
|
article_id=article_id,
|
|
alias=mention_buffer,
|
|
entity=qid,
|
|
start=start,
|
|
end=end)
|
|
found_entities = True
|
|
final_text += mention_buffer
|
|
|
|
entity_buffer = ""
|
|
mention_buffer = ""
|
|
|
|
reading_text = True
|
|
reading_entity = False
|
|
reading_mention = False
|
|
reading_special_case = False
|
|
|
|
if found_entities:
|
|
_write_training_article(article_id=article_id, clean_text=final_text, training_output=training_output)
|
|
|
|
|
|
info_regex = re.compile(r'{[^{]*?}')
|
|
htlm_regex = re.compile(r'<!--[^-]*-->')
|
|
category_regex = re.compile(r'\[\[Category:[^\[]*]]')
|
|
file_regex = re.compile(r'\[\[File:[^[\]]+]]')
|
|
ref_regex = re.compile(r'<ref.*?>') # non-greedy
|
|
ref_2_regex = re.compile(r'</ref.*?>') # non-greedy
|
|
|
|
|
|
def _get_clean_wp_text(article_text):
|
|
clean_text = article_text.strip()
|
|
|
|
# remove bolding & italic markup
|
|
clean_text = clean_text.replace('\'\'\'', '')
|
|
clean_text = clean_text.replace('\'\'', '')
|
|
|
|
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
|
|
try_again = True
|
|
previous_length = len(clean_text)
|
|
while try_again:
|
|
clean_text = info_regex.sub('', clean_text) # non-greedy match excluding a nested {
|
|
if len(clean_text) < previous_length:
|
|
try_again = True
|
|
else:
|
|
try_again = False
|
|
previous_length = len(clean_text)
|
|
|
|
# remove HTML comments
|
|
clean_text = htlm_regex.sub('', clean_text)
|
|
|
|
# remove Category and File statements
|
|
clean_text = category_regex.sub('', clean_text)
|
|
clean_text = file_regex.sub('', clean_text)
|
|
|
|
# remove multiple =
|
|
while '==' in clean_text:
|
|
clean_text = clean_text.replace("==", "=")
|
|
|
|
clean_text = clean_text.replace(". =", ".")
|
|
clean_text = clean_text.replace(" = ", ". ")
|
|
clean_text = clean_text.replace("= ", ".")
|
|
clean_text = clean_text.replace(" =", "")
|
|
|
|
# remove refs (non-greedy match)
|
|
clean_text = ref_regex.sub('', clean_text)
|
|
clean_text = ref_2_regex.sub('', clean_text)
|
|
|
|
# remove additional wikiformatting
|
|
clean_text = re.sub(r'<blockquote>', '', clean_text)
|
|
clean_text = re.sub(r'</blockquote>', '', clean_text)
|
|
|
|
# change special characters back to normal ones
|
|
clean_text = clean_text.replace(r'<', '<')
|
|
clean_text = clean_text.replace(r'>', '>')
|
|
clean_text = clean_text.replace(r'"', '"')
|
|
clean_text = clean_text.replace(r'&nbsp;', ' ')
|
|
clean_text = clean_text.replace(r'&', '&')
|
|
|
|
# remove multiple spaces
|
|
while ' ' in clean_text:
|
|
clean_text = clean_text.replace(' ', ' ')
|
|
|
|
return clean_text.strip()
|
|
|
|
|
|
def _write_training_article(article_id, clean_text, training_output):
|
|
file_loc = training_output / str(article_id) + ".txt"
|
|
with open(file_loc, mode='w', encoding='utf8') as outputfile:
|
|
outputfile.write(clean_text)
|
|
|
|
|
|
def _write_training_entity(outputfile, article_id, alias, entity, start, end):
|
|
outputfile.write(article_id + "|" + alias + "|" + entity + "|" + str(start) + "|" + str(end) + "\n")
|
|
|
|
|
|
def is_dev(article_id):
|
|
return article_id.endswith("3")
|
|
|
|
|
|
def read_training(nlp, training_dir, dev, limit):
|
|
# This method provides training examples that correspond to the entity annotations found by the nlp object
|
|
entityfile_loc = training_dir / ENTITY_FILE
|
|
data = []
|
|
|
|
# assume the data is written sequentially, so we can reuse the article docs
|
|
current_article_id = None
|
|
current_doc = None
|
|
ents_by_offset = dict()
|
|
skip_articles = set()
|
|
total_entities = 0
|
|
|
|
with open(entityfile_loc, mode='r', encoding='utf8') as file:
|
|
for line in file:
|
|
if not limit or len(data) < limit:
|
|
fields = line.replace('\n', "").split(sep='|')
|
|
article_id = fields[0]
|
|
alias = fields[1]
|
|
wp_title = fields[2]
|
|
start = fields[3]
|
|
end = fields[4]
|
|
|
|
if dev == is_dev(article_id) and article_id != "article_id" and article_id not in skip_articles:
|
|
if not current_doc or (current_article_id != article_id):
|
|
# parse the new article text
|
|
file_name = article_id + ".txt"
|
|
try:
|
|
with open(os.path.join(training_dir, file_name), mode="r", encoding='utf8') as f:
|
|
text = f.read()
|
|
if len(text) < 30000: # threshold for convenience / speed of processing
|
|
current_doc = nlp(text)
|
|
current_article_id = article_id
|
|
ents_by_offset = dict()
|
|
for ent in current_doc.ents:
|
|
sent_length = len(ent.sent)
|
|
# custom filtering to avoid too long or too short sentences
|
|
if 5 < sent_length < 100:
|
|
ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)] = ent
|
|
else:
|
|
skip_articles.add(article_id)
|
|
current_doc = None
|
|
except Exception as e:
|
|
print("Problem parsing article", article_id, e)
|
|
skip_articles.add(article_id)
|
|
raise e
|
|
|
|
# repeat checking this condition in case an exception was thrown
|
|
if current_doc and (current_article_id == article_id):
|
|
found_ent = ents_by_offset.get(start + "_" + end, None)
|
|
if found_ent:
|
|
if found_ent.text != alias:
|
|
skip_articles.add(article_id)
|
|
current_doc = None
|
|
else:
|
|
sent = found_ent.sent.as_doc()
|
|
# currently feeding the gold data one entity per sentence at a time
|
|
gold_start = int(start) - found_ent.sent.start_char
|
|
gold_end = int(end) - found_ent.sent.start_char
|
|
gold_entities = [(gold_start, gold_end, wp_title)]
|
|
gold = GoldParse(doc=sent, links=gold_entities)
|
|
data.append((sent, gold))
|
|
total_entities += 1
|
|
if len(data) % 2500 == 0:
|
|
print(" -read", total_entities, "entities")
|
|
|
|
print(" -read", total_entities, "entities")
|
|
return data
|