mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Expected an `entity_ruler.jsonl` file in the top-level model directory, so the path passed to from_disk by default (model path plus componentn name), but with the suffix ".jsonl".
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from spacy.tokens import Span
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import EntityRuler
 | 
						|
from spacy import load
 | 
						|
import srsly
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def patterns():
 | 
						|
    return [
 | 
						|
        {"label": "HELLO", "pattern": "hello world"},
 | 
						|
        {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | 
						|
        {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | 
						|
        {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | 
						|
        {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def add_ent():
 | 
						|
    def add_ent_component(doc):
 | 
						|
        doc.ents = [Span(doc, 0, 3, label=doc.vocab.strings["ORG"])]
 | 
						|
        return doc
 | 
						|
 | 
						|
    return add_ent_component
 | 
						|
 | 
						|
 | 
						|
def test_entity_ruler_existing_overwrite_serialize_bytes(patterns, en_vocab):
 | 
						|
    nlp = Language(vocab=en_vocab)
 | 
						|
    ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | 
						|
    ruler_bytes = ruler.to_bytes()
 | 
						|
    assert len(ruler) == len(patterns)
 | 
						|
    assert len(ruler.labels) == 4
 | 
						|
    assert ruler.overwrite
 | 
						|
    new_ruler = EntityRuler(nlp)
 | 
						|
    new_ruler = new_ruler.from_bytes(ruler_bytes)
 | 
						|
    assert len(new_ruler) == len(ruler)
 | 
						|
    assert len(new_ruler.labels) == 4
 | 
						|
    assert new_ruler.overwrite == ruler.overwrite
 | 
						|
    assert new_ruler.ent_id_sep == ruler.ent_id_sep
 | 
						|
 | 
						|
 | 
						|
def test_entity_ruler_existing_bytes_old_format_safe(patterns, en_vocab):
 | 
						|
    nlp = Language(vocab=en_vocab)
 | 
						|
    ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | 
						|
    bytes_old_style = srsly.msgpack_dumps(ruler.patterns)
 | 
						|
    new_ruler = EntityRuler(nlp)
 | 
						|
    new_ruler = new_ruler.from_bytes(bytes_old_style)
 | 
						|
    assert len(new_ruler) == len(ruler)
 | 
						|
    for pattern in ruler.patterns:
 | 
						|
        assert pattern in new_ruler.patterns
 | 
						|
    assert new_ruler.overwrite is not ruler.overwrite
 | 
						|
 | 
						|
 | 
						|
def test_entity_ruler_from_disk_old_format_safe(patterns, en_vocab):
 | 
						|
    nlp = Language(vocab=en_vocab)
 | 
						|
    ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        out_file = tmpdir / "entity_ruler"
 | 
						|
        srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns)
 | 
						|
        new_ruler = EntityRuler(nlp).from_disk(out_file)
 | 
						|
        for pattern in ruler.patterns:
 | 
						|
            assert pattern in new_ruler.patterns
 | 
						|
        assert len(new_ruler) == len(ruler)
 | 
						|
        assert new_ruler.overwrite is not ruler.overwrite
 | 
						|
 | 
						|
 | 
						|
def test_entity_ruler_in_pipeline_from_issue(patterns, en_vocab):
 | 
						|
    nlp = Language(vocab=en_vocab)
 | 
						|
    ruler = EntityRuler(nlp, overwrite_ents=True)
 | 
						|
 | 
						|
    ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
 | 
						|
    nlp.add_pipe(ruler)
 | 
						|
    with make_tempdir() as tmpdir:
 | 
						|
        nlp.to_disk(tmpdir)
 | 
						|
        ruler = nlp.get_pipe("entity_ruler")
 | 
						|
        assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
 | 
						|
        assert ruler.overwrite is True
 | 
						|
        nlp2 = load(tmpdir)
 | 
						|
        new_ruler = nlp2.get_pipe("entity_ruler")
 | 
						|
        assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
 | 
						|
        assert new_ruler.overwrite is True
 |