mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Include Doc.cats in to_bytes() * Include Doc.cats in DocBin serialization * Add tests for serialization of cats Test serialization of cats for Doc and DocBin.
		
			
				
	
	
		
			208 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import numpy
 | |
| import zlib
 | |
| import srsly
 | |
| from thinc.neural.ops import NumpyOps
 | |
| 
 | |
| from ..compat import copy_reg
 | |
| from ..tokens import Doc
 | |
| from ..attrs import SPACY, ORTH, intify_attr
 | |
| from ..errors import Errors
 | |
| 
 | |
| 
 | |
| class DocBin(object):
 | |
|     """Pack Doc objects for binary serialization.
 | |
| 
 | |
|     The DocBin class lets you efficiently serialize the information from a
 | |
|     collection of Doc objects. You can control which information is serialized
 | |
|     by passing a list of attribute IDs, and optionally also specify whether the
 | |
|     user data is serialized. The DocBin is faster and produces smaller data
 | |
|     sizes than pickle, and allows you to deserialize without executing arbitrary
 | |
|     Python code.
 | |
| 
 | |
|     The serialization format is gzipped msgpack, where the msgpack object has
 | |
|     the following structure:
 | |
| 
 | |
|     {
 | |
|         "attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
 | |
|         "tokens": bytes, # Serialized numpy uint64 array with the token data
 | |
|         "spaces": bytes, # Serialized numpy boolean array with spaces data
 | |
|         "lengths": bytes, # Serialized numpy int32 array with the doc lengths
 | |
|         "strings": List[unicode] # List of unique strings in the token data
 | |
|     }
 | |
| 
 | |
|     Strings for the words, tags, labels etc are represented by 64-bit hashes in
 | |
|     the token data, and every string that occurs at least once is passed via the
 | |
|     strings object. This means the storage is more efficient if you pack more
 | |
|     documents together, because you have less duplication in the strings.
 | |
| 
 | |
|     A notable downside to this format is that you can't easily extract just one
 | |
|     document from the DocBin.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, attrs=None, store_user_data=False):
 | |
|         """Create a DocBin object to hold serialized annotations.
 | |
| 
 | |
|         attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
 | |
|             always serialized, so they're not required. Defaults to None.
 | |
|         store_user_data (bool): Whether to include the `Doc.user_data`.
 | |
|         RETURNS (DocBin): The newly constructed object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#init
 | |
|         """
 | |
|         attrs = attrs or []
 | |
|         attrs = sorted([intify_attr(attr) for attr in attrs])
 | |
|         self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
 | |
|         self.attrs.insert(0, ORTH)  # Ensure ORTH is always attrs[0]
 | |
|         self.tokens = []
 | |
|         self.spaces = []
 | |
|         self.cats = []
 | |
|         self.user_data = []
 | |
|         self.strings = set()
 | |
|         self.store_user_data = store_user_data
 | |
| 
 | |
|     def __len__(self):
 | |
|         """RETURNS: The number of Doc objects added to the DocBin."""
 | |
|         return len(self.tokens)
 | |
| 
 | |
|     def add(self, doc):
 | |
|         """Add a Doc's annotations to the DocBin for serialization.
 | |
| 
 | |
|         doc (Doc): The Doc object to add.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#add
 | |
|         """
 | |
|         array = doc.to_array(self.attrs)
 | |
|         if len(array.shape) == 1:
 | |
|             array = array.reshape((array.shape[0], 1))
 | |
|         self.tokens.append(array)
 | |
|         spaces = doc.to_array(SPACY)
 | |
|         assert array.shape[0] == spaces.shape[0]  # this should never happen
 | |
|         spaces = spaces.reshape((spaces.shape[0], 1))
 | |
|         self.spaces.append(numpy.asarray(spaces, dtype=bool))
 | |
|         self.strings.update(w.text for w in doc)
 | |
|         self.cats.append(doc.cats)
 | |
|         if self.store_user_data:
 | |
|             self.user_data.append(srsly.msgpack_dumps(doc.user_data))
 | |
| 
 | |
|     def get_docs(self, vocab):
 | |
|         """Recover Doc objects from the annotations, using the given vocab.
 | |
| 
 | |
|         vocab (Vocab): The shared vocab.
 | |
|         YIELDS (Doc): The Doc objects.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#get_docs
 | |
|         """
 | |
|         for string in self.strings:
 | |
|             vocab[string]
 | |
|         orth_col = self.attrs.index(ORTH)
 | |
|         for i in range(len(self.tokens)):
 | |
|             tokens = self.tokens[i]
 | |
|             spaces = self.spaces[i]
 | |
|             words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
 | |
|             doc = Doc(vocab, words=words, spaces=spaces)
 | |
|             doc = doc.from_array(self.attrs, tokens)
 | |
|             doc.cats = self.cats[i]
 | |
|             if self.store_user_data:
 | |
|                 user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
 | |
|                 doc.user_data.update(user_data)
 | |
|             yield doc
 | |
| 
 | |
|     def merge(self, other):
 | |
|         """Extend the annotations of this DocBin with the annotations from
 | |
|         another. Will raise an error if the pre-defined attrs of the two
 | |
|         DocBins don't match.
 | |
| 
 | |
|         other (DocBin): The DocBin to merge into the current bin.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#merge
 | |
|         """
 | |
|         if self.attrs != other.attrs:
 | |
|             raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
 | |
|         self.tokens.extend(other.tokens)
 | |
|         self.spaces.extend(other.spaces)
 | |
|         self.strings.update(other.strings)
 | |
|         self.cats.extend(other.cats)
 | |
|         if self.store_user_data:
 | |
|             self.user_data.extend(other.user_data)
 | |
| 
 | |
|     def to_bytes(self):
 | |
|         """Serialize the DocBin's annotations to a bytestring.
 | |
| 
 | |
|         RETURNS (bytes): The serialized DocBin.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#to_bytes
 | |
|         """
 | |
|         for tokens in self.tokens:
 | |
|             assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | |
|         lengths = [len(tokens) for tokens in self.tokens]
 | |
|         msg = {
 | |
|             "attrs": self.attrs,
 | |
|             "tokens": numpy.vstack(self.tokens).tobytes("C"),
 | |
|             "spaces": numpy.vstack(self.spaces).tobytes("C"),
 | |
|             "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
 | |
|             "strings": list(self.strings),
 | |
|             "cats": self.cats,
 | |
|         }
 | |
|         if self.store_user_data:
 | |
|             msg["user_data"] = self.user_data
 | |
|         return zlib.compress(srsly.msgpack_dumps(msg))
 | |
| 
 | |
|     def from_bytes(self, bytes_data):
 | |
|         """Deserialize the DocBin's annotations from a bytestring.
 | |
| 
 | |
|         bytes_data (bytes): The data to load from.
 | |
|         RETURNS (DocBin): The loaded DocBin.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/docbin#from_bytes
 | |
|         """
 | |
|         msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
 | |
|         self.attrs = msg["attrs"]
 | |
|         self.strings = set(msg["strings"])
 | |
|         lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
 | |
|         flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
 | |
|         flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
 | |
|         shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
 | |
|         flat_tokens = flat_tokens.reshape(shape)
 | |
|         flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
 | |
|         self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
 | |
|         self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
 | |
|         self.cats = msg["cats"]
 | |
|         if self.store_user_data and "user_data" in msg:
 | |
|             self.user_data = list(msg["user_data"])
 | |
|         for tokens in self.tokens:
 | |
|             assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | |
|         return self
 | |
| 
 | |
| 
 | |
| def merge_bins(bins):
 | |
|     merged = None
 | |
|     for byte_string in bins:
 | |
|         if byte_string is not None:
 | |
|             doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
 | |
|             if merged is None:
 | |
|                 merged = doc_bin
 | |
|             else:
 | |
|                 merged.merge(doc_bin)
 | |
|     if merged is not None:
 | |
|         return merged.to_bytes()
 | |
|     else:
 | |
|         return b""
 | |
| 
 | |
| 
 | |
| def pickle_bin(doc_bin):
 | |
|     return (unpickle_bin, (doc_bin.to_bytes(),))
 | |
| 
 | |
| 
 | |
| def unpickle_bin(byte_string):
 | |
|     return DocBin().from_bytes(byte_string)
 | |
| 
 | |
| 
 | |
| copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
 | |
| # Compatibility, as we had named it this previously.
 | |
| Binder = DocBin
 | |
| 
 | |
| __all__ = ["DocBin"]
 |