spaCy/spacy/tests/util.py
adrianeboyd 3b22eb651b
Sync Span __eq__ and __hash__ (#5005)
* Sync Span __eq__ and __hash__

Use the same tuple for `__eq__` and `__hash__`, including all attributes
except `vector` and `vector_norm`.

* Update entity comparison in tests

Update `assert_docs_equal()` test util to compare `Span` properties for
ents rather than `Span` objects.
2020-02-16 17:20:36 +01:00

113 lines
3.5 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import numpy
import tempfile
import shutil
import contextlib
import srsly
from pathlib import Path
from spacy.tokens import Doc, Span
from spacy.attrs import POS, HEAD, DEP
from spacy.compat import path2str
@contextlib.contextmanager
def make_tempfile(mode="r"):
f = tempfile.TemporaryFile(mode=mode)
yield f
f.close()
@contextlib.contextmanager
def make_tempdir():
d = Path(tempfile.mkdtemp())
yield d
shutil.rmtree(path2str(d))
def get_doc(vocab, words=[], pos=None, heads=None, deps=None, tags=None, ents=None):
"""Create Doc object from given vocab, words and annotations."""
pos = pos or [""] * len(words)
tags = tags or [""] * len(words)
heads = heads or [0] * len(words)
deps = deps or [""] * len(words)
for value in deps + tags + pos:
vocab.strings.add(value)
doc = Doc(vocab, words=words)
attrs = doc.to_array([POS, HEAD, DEP])
for i, (p, head, dep) in enumerate(zip(pos, heads, deps)):
attrs[i, 0] = doc.vocab.strings[p]
attrs[i, 1] = head
attrs[i, 2] = doc.vocab.strings[dep]
doc.from_array([POS, HEAD, DEP], attrs)
if ents:
doc.ents = [
Span(doc, start, end, label=doc.vocab.strings[label])
for start, end, label in ents
]
if tags:
for token in doc:
token.tag_ = tags[token.i]
return doc
def apply_transition_sequence(parser, doc, sequence):
"""Perform a series of pre-specified transitions, to put the parser in a
desired state."""
for action_name in sequence:
if "-" in action_name:
move, label = action_name.split("-")
parser.add_label(label)
with parser.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_vecs_to_vocab(vocab, vectors):
"""Add list of vector tuples to given vocab. All vectors need to have the
same length. Format: [("text", [1, 2, 3])]"""
length = len(vectors[0][1])
vocab.reset_vectors(width=length)
for word, vec in vectors:
vocab.set_vector(word, vector=vec)
return vocab
def get_cosine(vec1, vec2):
"""Get cosine for two given vectors"""
return numpy.dot(vec1, vec2) / (numpy.linalg.norm(vec1) * numpy.linalg.norm(vec2))
def assert_docs_equal(doc1, doc2):
"""Compare two Doc objects and assert that they're equal. Tests for tokens,
tags, dependencies and entities."""
assert [t.orth for t in doc1] == [t.orth for t in doc2]
assert [t.pos for t in doc1] == [t.pos for t in doc2]
assert [t.tag for t in doc1] == [t.tag for t in doc2]
assert [t.head.i for t in doc1] == [t.head.i for t in doc2]
assert [t.dep for t in doc1] == [t.dep for t in doc2]
if doc1.is_parsed and doc2.is_parsed:
assert [s for s in doc1.sents] == [s for s in doc2.sents]
assert [t.ent_type for t in doc1] == [t.ent_type for t in doc2]
assert [t.ent_iob for t in doc1] == [t.ent_iob for t in doc2]
for ent1, ent2 in zip(doc1.ents, doc2.ents):
assert ent1.start == ent2.start
assert ent1.end == ent2.end
assert ent1.label == ent2.label
assert ent1.kb_id == ent2.kb_id
def assert_packed_msg_equal(b1, b2):
"""Assert that two packed msgpack messages are equal."""
msg1 = srsly.msgpack_loads(b1)
msg2 = srsly.msgpack_loads(b2)
assert sorted(msg1.keys()) == sorted(msg2.keys())
for (k1, v1), (k2, v2) in zip(sorted(msg1.items()), sorted(msg2.items())):
assert k1 == k2
assert v1 == v2