spaCy/website/docs/usage/v2.jade
2017-05-23 23:40:04 +02:00

321 lines
12 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0
include ../../_includes/_mixins
p
| We also re-wrote a large part of the documentation and usage workflows,
| and added more examples.
+h(2, "features") New features
+h(3, "features-displacy") displaCy visualizer with Jupyter support
+aside-code("Example").
from spacy import displacy
doc = nlp(u'This is a sentence about Facebook.')
displacy.serve(doc, style='dep') # run the web server
html = displacy.render(doc, style='ent') # generate HTML
p
| Our popular dependency and named entity visualizers are now an official
| part of the spaCy library! displaCy can run a simple web server, or
| generate raw HTML markup or SVG files to be exported. You can pass in one
| or more docs, and customise the style. displaCy also auto-detects whether
| you're running #[+a("https://jupyter.org") Jupyter] and will render the
| visualizations in your notebook.
+infobox
| #[strong API:] #[+api("displacy") #[code displacy]]
| #[strong Usage:] #[+a("/docs/usage/visualizers") Visualizing spaCy]
+h(3, "features-loading") Loading
+aside-code("Example").
nlp = spacy.load('en') # shortcut link
nlp = spacy.load('en_core_web_sm') # package
nlp = spacy.load('/path/to/en') # unicode path
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
p
| The improved #[code spacy.load] makes loading models easier and more
| transparent. You can load a model by supplying its
| #[+a("/docs/usage/models#usage") shortcut link], the name of an installed
| #[+a("/docs/usage/saving-loading#generating") model package], a unicode
| path or a #[code Path]-like object. spaCy will try resolving the load
| argument in this order. The #[code path] keyword argument is now deprecated.
p
| The #[code Language] class to initialise will be determined based on the
| model's settings. If no model is found, spaCy will let you know and won't
| just return an empty #[code Language] object anymore. If you want a blank
| language, you can always import the class directly, e.g.
| #[code from spacy.lang.en import English].
+infobox
| #[strong API:] #[+api("spacy#load") #[code spacy.load]]
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
+h(3, "features-language") Improved language data and lazy loading
p
| Language-specfic data now lives in its own submodule, #[code spacy.lang].
| Languages are lazy-loaded, i.e. only loaded when you import a
| #[code Language] class, or load a model that initialises one. This allows
| languages to contain more custom data, e.g. lemmatizer lookup tables, or
| complex regular expressions. The language data has also been tidied up
| and simplified. It's now also possible to overwrite the functions that
| compute lexical attributes like #[code like_num], and supply
| language-specific syntax iterators, e.g. to determine noun chunks.
+infobox
| #[strong Code:] #[+src(gh("spaCy", "spacy/lang")) spacy/lang]
| #[strong Usage:] #[+a("/docs/usage/adding-languages") Adding languages]
+h(3, "features-pipelines") Improved processing pipelines
+aside-code("Example").
from spacy.language import Language
nlp = Language(pipeline=['token_vectors', 'tags',
'dependencies'])
+infobox
| #[strong API:] #[+api("language") #[code Language]]
| #[strong Usage:] #[+a("/docs/usage/processing-text") Processing text]
+h(3, "features-lemmatizer") Simple lookup-based lemmatization
+aside-code("Example").
LOOKUP = {
"aba": "abar",
"ababa": "abar",
"ababais": "abar",
"ababan": "abar",
"ababanes": "ababán"
}
p
| spaCy now supports simple lookup-based lemmatization. The data is stored
| in a dictionary mapping a string to its lemma. To determine a token's
| lemma, spaCy simply looks it up in the table. The lookup lemmatizer can
| be imported from #[code spacy.lemmatizerlookup]. It's initialised with
| the lookup table, and should be returned by the #[code create_lemmatizer]
| classmethod of the language's defaults.
+infobox
| #[strong API:] #[+api("language") #[code Language]]
| #[strong Usage:] #[+a("/docs/usage/adding-languages") Adding languages]
+h(3, "features-matcher") Revised matcher API
+aside-code("Example").
from spacy.matcher import Matcher
from spacy.attrs import LOWER, IS_PUNCT
matcher = Matcher(nlp.vocab)
matcher.add('HelloWorld', None,
[{LOWER: 'hello'}, {IS_PUNCT: True}, {LOWER: 'world'}],
[{LOWER: 'hello'}, {LOWER: 'world'}])
assert len(matcher) == 1
assert 'HelloWorld' in matcher
p
| Patterns can now be added to the matcher by calling
| #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional
| callback function to be invoked on each match, and one or more patterns.
| This allows you to write powerful, pattern-specific logic using only one
| matcher. For example, you might only want to merge some entity types,
| and set custom flags for other matched patterns.
+infobox
| #[strong API:] #[+api("matcher") #[code Matcher]]
| #[strong Usage:] #[+a("/docs/usage/rule-based-matching") Rule-based matching]
+h(3, "features-serializer") Serialization
+infobox
| #[strong API:] #[+api("serializer") #[code Serializer]]
| #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading]
+h(3, "features-models") Neural network models for English, German, French and Spanish
+infobox
| #[strong Details:] #[+src(gh("spacy-models")) spacy-models]
| #[strong Usage:] #[+a("/docs/usage/models") Models]
+h(2, "incompat") Backwards incompatibilities
+table(["Old", "New"])
+row
+cell
| #[code spacy.en]
| #[code spacy.xx]
+cell
| #[code spacy.lang.en]
| #[code spacy.lang.xx]
+row
+cell #[code spacy.orth]
+cell #[code spacy.lang.xx.lex_attrs]
+row
+cell #[code Language.save_to_directory]
+cell #[+api("language#to_disk") #[code Language.to_disk]]
+row
+cell #[code Tokenizer.load]
+cell
| #[+api("tokenizer#from_disk") #[code Tokenizer.from_disk]]
| #[+api("tokenizer#from_bytes") #[code Tokenizer.from_bytes]]
+row
+cell #[code Tagger.load]
+cell
| #[+api("tagger#from_disk") #[code Tagger.from_disk]]
| #[+api("tagger#from_bytes") #[code Tagger.from_bytes]]
+row
+cell #[code DependencyParser.load]
+cell
| #[+api("dependencyparser#from_disk") #[code DependencyParser.from_disk]]
| #[+api("dependencyparser#from_bytes") #[code DependencyParser.from_bytes]]
+row
+cell #[code EntityRecognizer.load]
+cell
| #[+api("entityrecognizer#from_disk") #[code EntityRecognizer.from_disk]]
| #[+api("entityrecognizer#from_bytes") #[code EntityRecognizer.from_bytes]]
+row
+cell
| #[code Vocab.load]
| #[code Vocab.load_lexemes]
| #[code Vocab.load_vectors]
| #[code Vocab.load_vectors_from_bin_loc]
+cell
| #[+api("vocab#from_disk") #[code Vocab.from_disk]]
| #[+api("vocab#from_bytes") #[code Vocab.from_bytes]]
+row
+cell
| #[code Vocab.dump]
| #[code Vocab.dump_vectors]
+cell
| #[+api("vocab#to_disk") #[code Vocab.to_disk]]
| #[+api("vocab#to_bytes") #[code Vocab.to_bytes]]
+row
+cell
| #[code StringStore.load]
+cell
| #[+api("stringstore#from_disk") #[code StringStore.from_disk]]
| #[+api("stringstore#from_bytes") #[code StringStore.from_bytes]]
+row
+cell
| #[code StringStore.dump]
+cell
| #[+api("stringstore#to_disk") #[code StringStore.to_disk]]
| #[+api("stringstore#to_bytes") #[code StringStore.to_bytes]]
+row
+cell #[code Matcher.load]
+cell -
+row
+cell
| #[code Matcher.add_pattern]
| #[code Matcher.add_entity]
+cell #[+api("matcher#add") #[code Matcher.add]]
+row
+cell #[code Matcher.get_entity]
+cell #[+api("matcher#get") #[code Matcher.get]]
+row
+cell #[code Matcher.has_entity]
+cell #[+api("matcher#contains") #[code Matcher.__contains__]]
+row
+cell #[code Doc.read_bytes]
+cell
+row
+cell #[code Token.is_ancestor_of]
+cell #[+api("token#is_ancestor") #[code Token.is_ancestor]]
+h(2, "migrating") Migrating from spaCy 1.x
+list
+item Saving, loading and serialization.
+item Processing pipelines and language data.
+item Adding patterns and callbacks to the matcher.
+item Models trained with spaCy 1.x.
+infobox("Some tips")
| Before migrating, we strongly recommend writing a few
| #[strong simple tests] specific to how you're using spaCy in your
| application. This makes it easier to check whether your code requires
| changes, and if so, which parts are affected.
| (By the way, feel free contribute your tests to
| #[+src(gh("spaCy", "spacy/tests")) our test suite] this will also ensure
| we never accidentally introduce a bug in a workflow that's
| important to you.) If you've trained your own models, keep in mind that
| your train and runtime inputs must match. This means you'll have to
| #[strong retrain your models] with spaCy v2.0 to make them compatible.
+h(3, "migrating-saving-loading") Saving, loading and serialization
+h(2, "migrating") Migrating from spaCy 1.x
p
| Double-check all calls to #[code spacy.load()] and make sure they don't
| use the #[code path] keyword argument.
+code-new nlp = spacy.load('/model')
+code-old nlp = spacy.load('en', path='/model')
p
| Review all other code that writes state to disk or bytes.
| All containers, now share the same, consistent API for saving and
| loading. Replace saving with #[code to_disk()] or #[code to_bytes()], and
| loading with #[code from_disk()] and #[code from_bytes()].
+code-new.
nlp.to_disk('/model')
nlp.vocab.to_disk('/vocab')
+code-old.
nlp.save_to_directory('/model')
nlp.vocab.dump('/vocab')
+h(3, "migrating-languages") Processing pipelines and language data
p
| If you're importing language data or #[code Language] classes, make sure
| to change your import statements to import from #[code spacy.lang]. If
| you've added your own custom language, it needs to be moved to
| #[code spacy/lang/xx].
+code-new from spacy.lang.en import English
+code-old from spacy.en import English
p
| All components, e.g. tokenizer exceptions, are now responsible for
| compiling their data in the correct format. The language_data.py files
| have been removed
+h(3, "migrating-matcher") Adding patterns and callbacks to the matcher
p
| If you're using the matcher, you can now add patterns in one step. This
| should be easy to update simply merge the ID, callback and patterns
| into one call to #[+api("matcher#add") #[code matcher.add]].
+code-new.
matcher.add('GoogleNow', merge_phrases, [{ORTH: 'Google'}, {ORTH: 'Now'}])
+code-old.
matcher.add_entity('GoogleNow', on_match=merge_phrases)
matcher.add_pattern('GoogleNow', [{ORTH: 'Google'}, {ORTH: 'Now'}])
+h(3, "migrating-models") Trained models