spaCy/spacy/tests/pipeline/test_entity_ruler.py
Duygu Altinok b56b9e7f31
Entity ruler remove pattern (#9685)
* added ruler coe

* added error for none existing pattern

* changed error to warning

* changed error to warning

* added basic tests

* fixed place

* added test files

* went back to error

* went back to pattern error

* minor change to docs

* changed style

* changed doc

* changed error slightly

* added remove to phrasem api

* error key already existed

* phrase matcher match code to api

* blacked tests

* moved comments before expr

* corrected error no

* Update website/docs/api/entityruler.md

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update website/docs/api/entityruler.md

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2021-12-06 15:32:49 +01:00

558 lines
19 KiB
Python

import pytest
from spacy import registry
from spacy.tokens import Doc, Span
from spacy.language import Language
from spacy.lang.en import English
from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.errors import MatchPatternError
from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops
@pytest.fixture
def nlp():
return Language()
@pytest.fixture
@registry.misc("entity_ruler_patterns")
def patterns():
return [
{"label": "HELLO", "pattern": "hello world"},
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
{"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"},
]
@Language.component("add_ent")
def add_ent_component(doc):
doc.ents = [Span(doc, 0, 3, label="ORG")]
return doc
@pytest.mark.issue(3345)
def test_issue3345():
"""Test case where preset entity crosses sentence boundary."""
nlp = English()
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model)
# Add the OUT action. I wouldn't have thought this would be necessary...
ner.moves.add_action(5, "")
ner.add_label("GPE")
doc = ruler(doc)
# Get into the state just before "New"
state = ner.moves.init_batch([doc])[0]
ner.moves.apply_transition(state, "O")
ner.moves.apply_transition(state, "O")
ner.moves.apply_transition(state, "O")
# Check that B-GPE is valid.
assert ner.moves.is_valid(state, "B-GPE")
@pytest.mark.issue(4849)
def test_issue4849():
nlp = English()
patterns = [
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"})
ruler.add_patterns(patterns)
text = """
The left is starting to take aim at Democratic front-runner Joe Biden.
Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy."
"""
# USING 1 PROCESS
count_ents = 0
for doc in nlp.pipe([text], n_process=1):
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
assert count_ents == 2
# USING 2 PROCESSES
if isinstance(get_current_ops, NumpyOps):
count_ents = 0
for doc in nlp.pipe([text], n_process=2):
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
assert count_ents == 2
@pytest.mark.issue(5918)
def test_issue5918():
# Test edge case when merging entities.
nlp = English()
ruler = nlp.add_pipe("entity_ruler")
patterns = [
{"label": "ORG", "pattern": "Digicon Inc"},
{"label": "ORG", "pattern": "Rotan Mosle Inc's"},
{"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"},
]
ruler.add_patterns(patterns)
text = """
Digicon Inc said it has completed the previously-announced disposition
of its computer systems division to an investment group led by
Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate.
"""
doc = nlp(text)
assert len(doc.ents) == 3
# make it so that the third span's head is within the entity (ent_iob=I)
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
# TODO: test for logging here
# with pytest.warns(UserWarning):
# doc[29].head = doc[33]
doc = merge_entities(doc)
assert len(doc.ents) == 3
@pytest.mark.issue(8168)
def test_issue8168():
nlp = English()
ruler = nlp.add_pipe("entity_ruler")
patterns = [
{"label": "ORG", "pattern": "Apple"},
{
"label": "GPE",
"pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}],
"id": "san-francisco",
},
{
"label": "GPE",
"pattern": [{"LOWER": "san"}, {"LOWER": "fran"}],
"id": "san-francisco",
},
]
ruler.add_patterns(patterns)
assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")}
@pytest.mark.issue(8216)
def test_entity_ruler_fix8216(nlp, patterns):
"""Test that patterns don't get added excessively."""
ruler = nlp.add_pipe("entity_ruler", config={"validate": True})
ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0
ruler.add_patterns([])
after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert after_count == pattern_count
def test_entity_ruler_init(nlp, patterns):
ruler = EntityRuler(nlp, patterns=patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
assert "HELLO" in ruler
assert "BYE" in ruler
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp("hello world bye bye")
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "HELLO"
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_no_patterns_warns(nlp):
ruler = EntityRuler(nlp)
assert len(ruler) == 0
assert len(ruler.labels) == 0
nlp.add_pipe("entity_ruler")
assert nlp.pipe_names == ["entity_ruler"]
with pytest.warns(UserWarning):
doc = nlp("hello world bye bye")
assert len(doc.ents) == 0
def test_entity_ruler_init_patterns(nlp, patterns):
# initialize with patterns
ruler = nlp.add_pipe("entity_ruler")
assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.ents[0].label_ == "HELLO"
assert doc.ents[1].label_ == "BYE"
nlp.remove_pipe("entity_ruler")
# initialize with patterns from misc registry
nlp.config["initialize"]["components"]["entity_ruler"] = {
"patterns": {"@misc": "entity_ruler_patterns"}
}
ruler = nlp.add_pipe("entity_ruler")
assert len(ruler.labels) == 0
nlp.initialize()
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.ents[0].label_ == "HELLO"
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_init_clear(nlp, patterns):
"""Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
ruler.initialize(lambda: [])
assert len(ruler.labels) == 0
def test_entity_ruler_clear(nlp, patterns):
"""Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world")
assert len(doc.ents) == 1
ruler.clear()
assert len(ruler.labels) == 0
with pytest.warns(UserWarning):
doc = nlp("hello world")
assert len(doc.ents) == 0
def test_entity_ruler_existing(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye")
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "ORG"
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_overwrite(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye")
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "HELLO"
assert doc.ents[0].text == "HELLO"
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_complex(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("foo foo bye bye")
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "COMPLEX"
assert doc.ents[1].label_ == "BYE"
assert len(doc.ents[0]) == 2
assert len(doc.ents[1]) == 2
def test_entity_ruler_entity_id(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
ruler.add_patterns(patterns)
doc = nlp("Apple is a technology company")
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "TECH_ORG"
assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns):
config = {"overwrite_ents": True, "ent_id_sep": "**"}
ruler = nlp.add_pipe("entity_ruler", config=config)
ruler.add_patterns(patterns)
assert "TECH_ORG**a1" in ruler.phrase_patterns
doc = nlp("Apple is a technology company")
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "TECH_ORG"
assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_serialize_bytes(nlp, patterns):
ruler = EntityRuler(nlp, patterns=patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
ruler_bytes = ruler.to_bytes()
new_ruler = EntityRuler(nlp)
assert len(new_ruler) == 0
assert len(new_ruler.labels) == 0
new_ruler = new_ruler.from_bytes(ruler_bytes)
assert len(new_ruler) == len(patterns)
assert len(new_ruler.labels) == 4
assert len(new_ruler.patterns) == len(ruler.patterns)
for pattern in ruler.patterns:
assert pattern in new_ruler.patterns
assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
ruler_bytes = ruler.to_bytes()
new_ruler = EntityRuler(nlp)
assert len(new_ruler) == 0
assert len(new_ruler.labels) == 0
assert new_ruler.phrase_matcher_attr is None
new_ruler = new_ruler.from_bytes(ruler_bytes)
assert len(new_ruler) == len(patterns)
assert len(new_ruler.labels) == 4
assert new_ruler.phrase_matcher_attr == "LOWER"
def test_entity_ruler_validate(nlp):
ruler = EntityRuler(nlp)
validated_ruler = EntityRuler(nlp, validate=True)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
# invalid pattern raises error without validate
with pytest.raises(ValueError):
ruler.add_patterns([invalid_pattern])
# valid pattern is added without errors with validate
validated_ruler.add_patterns([valid_pattern])
# invalid pattern raises error with validate
with pytest.raises(MatchPatternError):
validated_ruler.add_patterns([invalid_pattern])
def test_entity_ruler_properties(nlp, patterns):
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
assert sorted(ruler.ent_ids) == ["a1", "a2"]
def test_entity_ruler_overlapping_spans(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR"
@pytest.mark.parametrize("n_process", [1, 2])
def test_entity_ruler_multiprocessing(nlp, n_process):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2):
for ent in doc.ents:
assert ent.ent_id_ == "1234"
def test_entity_ruler_serialize_jsonl(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler.jsonl")
ruler.from_disk(d / "test_ruler.jsonl") # read from an existing jsonl file
with pytest.raises(ValueError):
ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file
def test_entity_ruler_serialize_dir(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler")
ruler.from_disk(d / "test_ruler") # read from an existing directory
with pytest.raises(ValueError):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_entity_ruler_remove_basic(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu went to school"))
assert len(ruler.patterns) == 3
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert "PERSON||duygu" in ruler.phrase_matcher
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu went to school"))
assert len(doc.ents) == 0
assert "PERSON||duygu" not in ruler.phrase_matcher
assert len(ruler.patterns) == 2
def test_entity_ruler_remove_same_id_multiple_patterns(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "DuyguCorp", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME."))
assert len(ruler.patterns) == 3
assert "PERSON||duygu" in ruler.phrase_matcher
assert "ORG||duygu" in ruler.phrase_matcher
assert len(doc.ents) == 3
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME."))
assert len(ruler.patterns) == 1
assert "PERSON||duygu" not in ruler.phrase_matcher
assert "ORG||duygu" not in ruler.phrase_matcher
assert len(doc.ents) == 1
def test_entity_ruler_remove_nonexisting_pattern(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
assert len(ruler.patterns) == 3
with pytest.raises(ValueError):
ruler.remove("nepattern")
assert len(ruler.patterns) == 3
def test_entity_ruler_remove_several_patterns(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME."))
assert len(ruler.patterns) == 3
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME"
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu founded her company ACME"))
assert len(ruler.patterns) == 2
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "ORG"
assert doc.ents[0].text == "ACME"
ruler.remove("acme")
doc = ruler(nlp.make_doc("Duygu founded her company ACME"))
assert len(ruler.patterns) == 1
assert len(doc.ents) == 0
def test_entity_ruler_remove_patterns_in_a_row(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday"))
assert len(doc.ents) == 3
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME"
assert doc.ents[2].label_ == "DATE"
assert doc.ents[2].text == "her birthday"
ruler.remove("duygu")
ruler.remove("acme")
ruler.remove("bday")
doc = ruler(nlp.make_doc("Duygu went to school"))
assert len(doc.ents) == 0
def test_entity_ruler_remove_all_patterns(nlp):
ruler = EntityRuler(nlp)
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
]
ruler.add_patterns(patterns)
assert len(ruler.patterns) == 3
ruler.remove("duygu")
assert len(ruler.patterns) == 2
ruler.remove("acme")
assert len(ruler.patterns) == 1
ruler.remove("bday")
assert len(ruler.patterns) == 0
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday"))
assert len(doc.ents) == 0
def test_entity_ruler_remove_and_add(nlp):
ruler = EntityRuler(nlp)
patterns = [{"label": "DATE", "pattern": "last time"}]
ruler.add_patterns(patterns)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "DATE"
assert doc.ents[0].text == "last time"
patterns1 = [{"label": "DATE", "pattern": "this time", "id": "ttime"}]
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "DATE"
assert doc.ents[0].text == "last time"
assert doc.ents[1].label_ == "DATE"
assert doc.ents[1].text == "this time"
ruler.remove("ttime")
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "DATE"
assert doc.ents[0].text == "last time"
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.ents) == 2
patterns2 = [{"label": "DATE", "pattern": "another time", "id": "ttime"}]
ruler.add_patterns(patterns2)
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 3
assert len(doc.ents) == 3
ruler.remove("ttime")
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 1
assert len(doc.ents) == 1