spaCy/spacy/gold/corpus.py
2020-07-29 11:36:42 +02:00

182 lines
6.1 KiB
Python

from typing import Union, List, Iterable, Iterator, TYPE_CHECKING
from pathlib import Path
import random
from .. import util
from .example import Example
from ..tokens import DocBin, Doc
from ..vocab import Vocab
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from ..language import Language # noqa: F401
class Corpus:
"""An annotated corpus, reading train and dev datasets from
the DocBin (.spacy) format.
DOCS: https://spacy.io/api/corpus
"""
def __init__(
self, train_loc: Union[str, Path], dev_loc: Union[str, Path], limit: int = 0
) -> None:
"""Create a Corpus.
train (str / Path): File or directory of training data.
dev (str / Path): File or directory of development data.
limit (int): Max. number of examples returned.
DOCS: https://spacy.io/api/corpus#init
"""
self.train_loc = train_loc
self.dev_loc = dev_loc
self.limit = limit
@staticmethod
def walk_corpus(path: Union[str, Path]) -> List[Path]:
path = util.ensure_path(path)
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif path.parts[-1].endswith(".spacy"):
locs.append(path)
return locs
def _make_example(
self, nlp: "Language", reference: Doc, gold_preproc: bool
) -> Example:
if gold_preproc or reference.has_unknown_spaces:
return Example(
Doc(
nlp.vocab,
words=[word.text for word in reference],
spaces=[bool(word.whitespace_) for word in reference],
),
reference,
)
else:
return Example(nlp.make_doc(reference.text), reference)
def make_examples(
self, nlp: "Language", reference_docs: Iterable[Doc], max_length: int = 0
) -> Iterator[Example]:
for reference in reference_docs:
if len(reference) == 0:
continue
elif max_length == 0 or len(reference) < max_length:
yield self._make_example(nlp, reference, False)
elif reference.is_sentenced:
for ref_sent in reference.sents:
if len(ref_sent) == 0:
continue
elif max_length == 0 or len(ref_sent) < max_length:
yield self._make_example(nlp, ref_sent.as_doc(), False)
def make_examples_gold_preproc(
self, nlp: "Language", reference_docs: Iterable[Doc]
) -> Iterator[Example]:
for reference in reference_docs:
if reference.is_sentenced:
ref_sents = [sent.as_doc() for sent in reference.sents]
else:
ref_sents = [reference]
for ref_sent in ref_sents:
eg = self._make_example(nlp, ref_sent, True)
if len(eg.x):
yield eg
def read_docbin(
self, vocab: Vocab, locs: Iterable[Union[str, Path]]
) -> Iterator[Doc]:
""" Yield training examples as example dicts """
i = 0
for loc in locs:
loc = util.ensure_path(loc)
if loc.parts[-1].endswith(".spacy"):
with loc.open("rb") as file_:
doc_bin = DocBin().from_bytes(file_.read())
docs = doc_bin.get_docs(vocab)
for doc in docs:
if len(doc):
yield doc
i += 1
if self.limit >= 1 and i >= self.limit:
break
def count_train(self, nlp: "Language") -> int:
"""Returns count of words in train examples.
nlp (Language): The current nlp. object.
RETURNS (int): The word count.
DOCS: https://spacy.io/api/corpus#count_train
"""
n = 0
i = 0
for example in self.train_dataset(nlp):
n += len(example.predicted)
if self.limit >= 0 and i >= self.limit:
break
i += 1
return n
def train_dataset(
self,
nlp: "Language",
*,
shuffle: bool = True,
gold_preproc: bool = False,
max_length: int = 0
) -> Iterator[Example]:
"""Yield examples from the training data.
nlp (Language): The current nlp object.
shuffle (bool): Whether to shuffle the examples.
gold_preproc (bool): Whether to train on gold-standard sentences and tokens.
max_length (int): Maximum document length. Longer documents will be
split into sentences, if sentence boundaries are available. 0 for
no limit.
YIELDS (Example): The examples.
DOCS: https://spacy.io/api/corpus#train_dataset
"""
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
if gold_preproc:
examples = self.make_examples_gold_preproc(nlp, ref_docs)
else:
examples = self.make_examples(nlp, ref_docs, max_length)
if shuffle:
examples = list(examples)
random.shuffle(examples)
yield from examples
def dev_dataset(
self, nlp: "Language", *, gold_preproc: bool = False
) -> Iterator[Example]:
"""Yield examples from the development data.
nlp (Language): The current nlp object.
gold_preproc (bool): Whether to train on gold-standard sentences and tokens.
YIELDS (Example): The examples.
DOCS: https://spacy.io/api/corpus#dev_dataset
"""
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.dev_loc))
if gold_preproc:
examples = self.make_examples_gold_preproc(nlp, ref_docs)
else:
examples = self.make_examples(nlp, ref_docs, max_length=0)
yield from examples