spaCy/spacy/language.py

734 lines
29 KiB
Python

# coding: utf8
from __future__ import absolute_import, unicode_literals
from contextlib import contextmanager
import copy
from thinc.neural import Model
from thinc.neural.optimizers import Adam
import random
import ujson
from collections import OrderedDict
import itertools
import weakref
import functools
import tqdm
from .tokenizer import Tokenizer
from .vocab import Vocab
from .tagger import Tagger
from .lemmatizer import Lemmatizer
from .syntax.parser import get_templates
from .pipeline import NeuralDependencyParser, TokenVectorEncoder, NeuralTagger
from .pipeline import NeuralEntityRecognizer, SimilarityHook, TextCategorizer
from .compat import json_dumps, izip, copy_reg
from .scorer import Scorer
from ._ml import link_vectors_to_models
from .attrs import IS_STOP
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from .lang.tokenizer_exceptions import TOKEN_MATCH
from .lang.tag_map import TAG_MAP
from .lang.lex_attrs import LEX_ATTRS, is_stop
from . import util
from . import about
class BaseDefaults(object):
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(cls.lemma_index, cls.lemma_exc, cls.lemma_rules,
cls.lemma_lookup)
@classmethod
def create_vocab(cls, nlp=None):
lemmatizer = cls.create_lemmatizer(nlp)
lex_attr_getters = dict(cls.lex_attr_getters)
# This is messy, but it's the minimal working fix to Issue #639.
lex_attr_getters[IS_STOP] = functools.partial(is_stop,
stops=cls.stop_words)
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
lemmatizer=lemmatizer)
for tag_str, exc in cls.morph_rules.items():
for orth_str, attrs in exc.items():
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
return vocab
@classmethod
def create_tokenizer(cls, nlp=None):
rules = cls.tokenizer_exceptions
token_match = cls.token_match
prefix_search = util.compile_prefix_regex(cls.prefixes).search \
if cls.prefixes else None
suffix_search = util.compile_suffix_regex(cls.suffixes).search \
if cls.suffixes else None
infix_finditer = util.compile_infix_regex(cls.infixes).finditer \
if cls.infixes else None
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
return Tokenizer(vocab, rules=rules,
prefix_search=prefix_search, suffix_search=suffix_search,
infix_finditer=infix_finditer, token_match=token_match)
pipe_names = ['tensorizer', 'tagger', 'parser', 'ner']
token_match = TOKEN_MATCH
prefixes = tuple(TOKENIZER_PREFIXES)
suffixes = tuple(TOKENIZER_SUFFIXES)
infixes = tuple(TOKENIZER_INFIXES)
tag_map = dict(TAG_MAP)
tokenizer_exceptions = {}
parser_features = get_templates('parser')
entity_features = get_templates('ner')
tagger_features = Tagger.feature_templates # TODO -- fix this
stop_words = set()
lemma_rules = {}
lemma_exc = {}
lemma_index = {}
lemma_lookup = {}
morph_rules = {}
lex_attr_getters = LEX_ATTRS
syntax_iterators = {}
class Language(object):
"""A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.
Defaults (class): Settings, data and factory methods for creating the `nlp`
object and processing pipeline.
lang (unicode): Two-letter language ID, i.e. ISO code.
"""
Defaults = BaseDefaults
lang = None
factories = {
'tokenizer': lambda nlp: nlp.Defaults.create_tokenizer(nlp),
'tensorizer': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg),
'tagger': lambda nlp, **cfg: NeuralTagger(nlp.vocab, **cfg),
'parser': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg),
'ner': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg),
'similarity': lambda nlp, **cfg: SimilarityHook(nlp.vocab, **cfg),
'textcat': lambda nlp, **cfg: TextCategorizer(nlp.vocab, **cfg)
}
def __init__(self, vocab=True, make_doc=True, meta={}, **kwargs):
"""Initialise a Language object.
vocab (Vocab): A `Vocab` object. If `True`, a vocab is created via
`Language.Defaults.create_vocab`.
make_doc (callable): A function that takes text and returns a `Doc`
object. Usually a `Tokenizer`.
pipeline (list): A list of annotation processes or IDs of annotation,
processes, e.g. a `Tagger` object, or `'tagger'`. IDs are looked
up in `Language.Defaults.factories`.
disable (list): A list of component names to exclude from the pipeline.
The disable list has priority over the pipeline list -- if the same
string occurs in both, the component is not loaded.
meta (dict): Custom meta data for the Language class. Is written to by
models to add model meta data.
RETURNS (Language): The newly constructed object.
"""
self._meta = dict(meta)
self._path = None
if vocab is True:
factory = self.Defaults.create_vocab
vocab = factory(self, **meta.get('vocab', {}))
self.vocab = vocab
if make_doc is True:
factory = self.Defaults.create_tokenizer
make_doc = factory(self, **meta.get('tokenizer', {}))
self.tokenizer = make_doc
self.pipeline = []
self._optimizer = None
def __reduce__(self):
bytes_data = self.to_bytes(vocab=False)
return (unpickle_language, (self.vocab, self.meta, bytes_data))
@property
def path(self):
return self._path
@property
def meta(self):
self._meta.setdefault('lang', self.vocab.lang)
self._meta.setdefault('name', 'model')
self._meta.setdefault('version', '0.0.0')
self._meta.setdefault('spacy_version', about.__version__)
self._meta.setdefault('description', '')
self._meta.setdefault('author', '')
self._meta.setdefault('email', '')
self._meta.setdefault('url', '')
self._meta.setdefault('license', '')
self._meta['pipeline'] = self.pipe_names
return self._meta
@meta.setter
def meta(self, value):
self._meta = value
# Conveniences to access pipeline components
@property
def tensorizer(self):
return self.get_pipe('tensorizer')
@property
def tagger(self):
return self.get_pipe('tagger')
@property
def parser(self):
return self.get_pipe('parser')
@property
def entity(self):
return self.get_pipe('ner')
@property
def matcher(self):
return self.get_pipe('matcher')
@property
def pipe_names(self):
"""Get names of available pipeline components.
RETURNS (list): List of component name strings, in order.
"""
return [pipe_name for pipe_name, _ in self.pipeline]
def get_pipe(self, name):
"""Get a pipeline component for a given component name.
name (unicode): Name of pipeline component to get.
RETURNS (callable): The pipeline component.
"""
for pipe_name, component in self.pipeline:
if pipe_name == name:
return component
msg = "No component '{}' found in pipeline. Available names: {}"
raise KeyError(msg.format(name, self.pipe_names))
def create_pipe(self, name, config=dict()):
"""Create a pipeline component from a factory.
name (unicode): Factory name to look up in `Language.factories`.
config (dict): Configuration parameters to initialise component.
RETURNS (callable): Pipeline component.
"""
if name not in self.factories:
raise KeyError("Can't find factory for '{}'.".format(name))
factory = self.factories[name]
return factory(self, **config)
def add_pipe(self, component, name=None, before=None, after=None,
first=None, last=None):
"""Add a component to the processing pipeline. Valid components are
callables that take a `Doc` object, modify it and return it. Only one of
before, after, first or last can be set. Default behaviour is "last".
component (callable): The pipeline component.
name (unicode): Name of pipeline component. Overwrites existing
component.name attribute if available. If no name is set and
the component exposes no name attribute, component.__name__ is
used. An error is raised if the name already exists in the pipeline.
before (unicode): Component name to insert component directly before.
after (unicode): Component name to insert component directly after.
first (bool): Insert component first / not first in the pipeline.
last (bool): Insert component last / not last in the pipeline.
EXAMPLE:
>>> nlp.add_pipe(component, before='ner')
>>> nlp.add_pipe(component, name='custom_name', last=True)
"""
if name is None:
if hasattr(component, 'name'):
name = component.name
elif hasattr(component, '__name__'):
name = component.__name__
elif hasattr(component, '__class__') and hasattr(component.__class__, '__name__'):
name = component.__class__.__name__
else:
name = repr(component)
if name in self.pipe_names:
raise ValueError("'{}' already exists in pipeline.".format(name))
if sum([bool(before), bool(after), bool(first), bool(last)]) >= 2:
msg = ("Invalid constraints. You can only set one of the "
"following: before, after, first, last.")
raise ValueError(msg)
pipe = (name, component)
if last or not any([first, before, after]):
self.pipeline.append(pipe)
elif first:
self.pipeline.insert(0, pipe)
elif before and before in self.pipe_names:
self.pipeline.insert(self.pipe_names.index(before), pipe)
elif after and after in self.pipe_names:
self.pipeline.insert(self.pipe_names.index(after), pipe)
else:
msg = "Can't find '{}' in pipeline. Available names: {}"
unfound = before or after
raise ValueError(msg.format(unfound, self.pipe_names))
def has_pipe(self, name):
"""Check if a component name is present in the pipeline. Equivalent to
`name in nlp.pipe_names`.
name (unicode): Name of the component.
RETURNS (bool): Whether a component of that name exists in the pipeline.
"""
return name in self.pipe_names
def replace_pipe(self, name, component):
"""Replace a component in the pipeline.
name (unicode): Name of the component to replace.
component (callable): Pipeline component.
"""
if name not in self.pipe_names:
msg = "Can't find '{}' in pipeline. Available names: {}"
raise ValueError(msg.format(name, self.pipe_names))
self.pipeline[self.pipe_names.index(name)] = (name, component)
def rename_pipe(self, old_name, new_name):
"""Rename a pipeline component.
old_name (unicode): Name of the component to rename.
new_name (unicode): New name of the component.
"""
if old_name not in self.pipe_names:
msg = "Can't find '{}' in pipeline. Available names: {}"
raise ValueError(msg.format(old_name, self.pipe_names))
if new_name in self.pipe_names:
msg = "'{}' already exists in pipeline. Existing names: {}"
raise ValueError(msg.format(new_name, self.pipe_names))
i = self.pipe_names.index(old_name)
self.pipeline[i] = (new_name, self.pipeline[i][1])
def remove_pipe(self, name):
"""Remove a component from the pipeline.
name (unicode): Name of the component to remove.
RETURNS (tuple): A `(name, component)` tuple of the removed component.
"""
if name not in self.pipe_names:
msg = "Can't find '{}' in pipeline. Available names: {}"
raise ValueError(msg.format(name, self.pipe_names))
return self.pipeline.pop(self.pipe_names.index(name))
def __call__(self, text, disable=[]):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
text (unicode): The text to be processed.
disable (list): Names of the pipeline components to disable.
RETURNS (Doc): A container for accessing the annotations.
EXAMPLE:
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].text, tokens[0].head.tag_
('An', 'NN')
"""
doc = self.make_doc(text)
for name, proc in self.pipeline:
if name in disable:
continue
doc = proc(doc)
return doc
def disable_pipes(self, *names):
'''Disable one or more pipeline components.
If used as a context manager, the pipeline will be restored to the initial
state at the end of the block. Otherwise, a DisabledPipes object is
returned, that has a `.restore()` method you can use to undo your
changes.
EXAMPLE:
>>> nlp.add_pipe('parser')
>>> nlp.add_pipe('tagger')
>>> with nlp.disable_pipes('parser', 'tagger'):
>>> assert not nlp.has_pipe('parser')
>>> assert nlp.has_pipe('parser')
>>> disabled = nlp.disable_pipes('parser')
>>> assert len(disabled) == 1
>>> assert not nlp.has_pipe('parser')
>>> disabled.restore()
>>> assert nlp.has_pipe('parser')
'''
return DisabledPipes(self, *names)
def make_doc(self, text):
return self.tokenizer(text)
def update(self, docs, golds, drop=0., sgd=None, losses=None):
"""Update the models in the pipeline.
docs (iterable): A batch of `Doc` objects.
golds (iterable): A batch of `GoldParse` objects.
drop (float): The droput rate.
sgd (callable): An optimizer.
RETURNS (dict): Results from the update.
EXAMPLE:
>>> with nlp.begin_training(gold, use_gpu=True) as (trainer, optimizer):
>>> for epoch in trainer.epochs(gold):
>>> for docs, golds in epoch:
>>> state = nlp.update(docs, golds, sgd=optimizer)
"""
if len(docs) != len(golds):
raise IndexError("Update expects same number of docs and golds "
"Got: %d, %d" % (len(docs), len(golds)))
if len(docs) == 0:
return
if sgd is None:
if self._optimizer is None:
self._optimizer = Adam(Model.ops, 0.001)
sgd = self._optimizer
grads = {}
def get_grads(W, dW, key=None):
grads[key] = (W, dW)
pipes = list(self.pipeline)
random.shuffle(pipes)
for name, proc in pipes:
if not hasattr(proc, 'update'):
continue
proc.update(docs, golds, drop=drop, sgd=get_grads, losses=losses)
for key, (W, dW) in grads.items():
sgd(W, dW, key=key)
def preprocess_gold(self, docs_golds):
"""Can be called before training to pre-process gold data. By default,
it handles nonprojectivity and adds missing tags to the tag map.
docs_golds (iterable): Tuples of `Doc` and `GoldParse` objects.
YIELDS (tuple): Tuples of preprocessed `Doc` and `GoldParse` objects.
"""
for name, proc in self.pipeline:
if hasattr(proc, 'preprocess_gold'):
docs_golds = proc.preprocess_gold(docs_golds)
for doc, gold in docs_golds:
yield doc, gold
def resume_training(self, **cfg):
if cfg.get('device', -1) >= 0:
device = util.use_gpu(cfg['device'])
if self.vocab.vectors.data.shape[1] >= 1:
self.vocab.vectors.data = Model.ops.asarray(
self.vocab.vectors.data)
else:
device = None
learn_rate = util.env_opt('learn_rate', 0.001)
beta1 = util.env_opt('optimizer_B1', 0.9)
beta2 = util.env_opt('optimizer_B2', 0.999)
eps = util.env_opt('optimizer_eps', 1e-08)
L2 = util.env_opt('L2_penalty', 1e-6)
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
self._optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
beta2=beta2, eps=eps)
self._optimizer.max_grad_norm = max_grad_norm
self._optimizer.device = device
return self._optimizer
def begin_training(self, get_gold_tuples=None, **cfg):
"""Allocate models, pre-process training data and acquire a trainer and
optimizer. Used as a contextmanager.
get_gold_tuples (function): Function returning gold data
**cfg: Config parameters.
RETURNS: An optimizer
"""
# Populate vocab
if get_gold_tuples is not None:
for _, annots_brackets in get_gold_tuples():
for annots, _ in annots_brackets:
for word in annots[1]:
_ = self.vocab[word]
contexts = []
if cfg.get('device', -1) >= 0:
device = util.use_gpu(cfg['device'])
if self.vocab.vectors.data.shape[1] >= 1:
self.vocab.vectors.data = Model.ops.asarray(
self.vocab.vectors.data)
else:
device = None
link_vectors_to_models(self.vocab)
for name, proc in self.pipeline:
if hasattr(proc, 'begin_training'):
context = proc.begin_training(get_gold_tuples(),
pipeline=self.pipeline)
contexts.append(context)
learn_rate = util.env_opt('learn_rate', 0.001)
beta1 = util.env_opt('optimizer_B1', 0.9)
beta2 = util.env_opt('optimizer_B2', 0.999)
eps = util.env_opt('optimizer_eps', 1e-08)
L2 = util.env_opt('L2_penalty', 1e-6)
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
self._optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
beta2=beta2, eps=eps)
self._optimizer.max_grad_norm = max_grad_norm
self._optimizer.device = device
return self._optimizer
def evaluate(self, docs_golds, verbose=False):
scorer = Scorer()
docs, golds = zip(*docs_golds)
docs = list(docs)
golds = list(golds)
for name, pipe in self.pipeline:
if not hasattr(pipe, 'pipe'):
docs = (pipe(doc) for doc in docs)
else:
docs = pipe.pipe(docs, batch_size=256)
for doc, gold in zip(docs, golds):
if verbose:
print(doc)
scorer.score(doc, gold, verbose=verbose)
return scorer
@contextmanager
def use_params(self, params, **cfg):
"""Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block.
params (dict): A dictionary of parameters keyed by model ID.
**cfg: Config parameters.
EXAMPLE:
>>> with nlp.use_params(optimizer.averages):
>>> nlp.to_disk('/tmp/checkpoint')
"""
contexts = [pipe.use_params(params) for name, pipe
in self.pipeline if hasattr(pipe, 'use_params')]
# TODO: Having trouble with contextlib
# Workaround: these aren't actually context managers atm.
for context in contexts:
try:
next(context)
except StopIteration:
pass
yield
for context in contexts:
try:
next(context)
except StopIteration:
pass
def pipe(self, texts, as_tuples=False, n_threads=2, batch_size=1000,
disable=[]):
"""Process texts as a stream, and yield `Doc` objects in order. Supports
GIL-free multi-threading.
texts (iterator): A sequence of texts to process.
as_tuples (bool):
If set to True, inputs should be a sequence of
(text, context) tuples. Output will then be a sequence of
(doc, context) tuples. Defaults to False.
n_threads (int): The number of worker threads to use. If -1, OpenMP will
decide how many to use at run time. Default is 2.
batch_size (int): The number of texts to buffer.
disable (list): Names of the pipeline components to disable.
YIELDS (Doc): Documents in the order of the original text.
EXAMPLE:
>>> texts = [u'One document.', u'...', u'Lots of documents']
>>> for doc in nlp.pipe(texts, batch_size=50, n_threads=4):
>>> assert doc.is_parsed
"""
if as_tuples:
text_context1, text_context2 = itertools.tee(texts)
texts = (tc[0] for tc in text_context1)
contexts = (tc[1] for tc in text_context2)
docs = self.pipe(texts, n_threads=n_threads, batch_size=batch_size,
disable=disable)
for doc, context in izip(docs, contexts):
yield (doc, context)
return
docs = (self.make_doc(text) for text in texts)
for name, proc in self.pipeline:
if name in disable:
continue
if hasattr(proc, 'pipe'):
docs = proc.pipe(docs, n_threads=n_threads, batch_size=batch_size)
else:
# Apply the function, but yield the doc
docs = _pipe(proc, docs)
# Track weakrefs of "recent" documents, so that we can see when they
# expire from memory. When they do, we know we don't need old strings.
# This way, we avoid maintaining an unbounded growth in string entries
# in the string store.
recent_refs = weakref.WeakSet()
old_refs = weakref.WeakSet()
original_strings_data = self.vocab.strings.to_bytes()
StringStore = self.vocab.strings.__class__
recent_strings = StringStore().from_bytes(original_strings_data)
nr_seen = 0
for doc in docs:
yield doc
for word in doc:
recent_strings.add(word.text)
recent_refs.add(doc)
if nr_seen < 10000:
old_refs.add(doc)
nr_seen += 1
elif len(old_refs) == 0:
# All the docs in the 'old' set have expired, so the only
# difference between the backup strings and the current
# string-store should be obsolete. We therefore swap out the
# old strings data.
old_refs, recent_refs = recent_refs, old_refs
self.vocab.strings._reset_and_load(recent_strings)
recent_strings = StringStore().from_bytes(original_strings_data)
nr_seen = 0
def to_disk(self, path, disable=tuple()):
"""Save the current state to a directory. If a model is loaded, this
will include the model.
path (unicode or Path): A path to a directory, which will be created if
it doesn't exist. Paths may be either strings or `Path`-like objects.
disable (list): Names of pipeline components to disable and prevent
from being saved.
EXAMPLE:
>>> nlp.to_disk('/path/to/models')
"""
path = util.ensure_path(path)
serializers = OrderedDict((
('tokenizer', lambda p: self.tokenizer.to_disk(p, vocab=False)),
('meta.json', lambda p: p.open('w').write(json_dumps(self.meta)))
))
for name, proc in self.pipeline:
if not hasattr(proc, 'name'):
continue
if name in disable:
continue
if not hasattr(proc, 'to_disk'):
continue
serializers[name] = lambda p, proc=proc: proc.to_disk(p, vocab=False)
serializers['vocab'] = lambda p: self.vocab.to_disk(p)
util.to_disk(path, serializers, {p: False for p in disable})
def from_disk(self, path, disable=tuple()):
"""Loads state from a directory. Modifies the object in place and
returns it. If the saved `Language` object contains a model, the
model will be loaded.
path (unicode or Path): A path to a directory. Paths may be either
strings or `Path`-like objects.
disable (list): Names of the pipeline components to disable.
RETURNS (Language): The modified `Language` object.
EXAMPLE:
>>> from spacy.language import Language
>>> nlp = Language().from_disk('/path/to/models')
"""
path = util.ensure_path(path)
deserializers = OrderedDict((
('vocab', lambda p: self.vocab.from_disk(p)),
('tokenizer', lambda p: self.tokenizer.from_disk(p, vocab=False)),
('meta.json', lambda p: self.meta.update(ujson.load(p.open('r'))))
))
for name, proc in self.pipeline:
if name in disable:
continue
if not hasattr(proc, 'to_disk'):
continue
deserializers[name] = lambda p, proc=proc: proc.from_disk(p, vocab=False)
exclude = {p: False for p in disable}
if not (path / 'vocab').exists():
exclude['vocab'] = True
util.from_disk(path, deserializers, exclude)
self._path = path
return self
def to_bytes(self, disable=[], **exclude):
"""Serialize the current state to a binary string.
disable (list): Nameds of pipeline components to disable and prevent
from being serialized.
RETURNS (bytes): The serialized form of the `Language` object.
"""
serializers = OrderedDict((
('vocab', lambda: self.vocab.to_bytes()),
('tokenizer', lambda: self.tokenizer.to_bytes(vocab=False)),
('meta', lambda: ujson.dumps(self.meta))
))
for i, (name, proc) in enumerate(self.pipeline):
if name in disable:
continue
if not hasattr(proc, 'to_bytes'):
continue
serializers[i] = lambda proc=proc: proc.to_bytes(vocab=False)
return util.to_bytes(serializers, exclude)
def from_bytes(self, bytes_data, disable=[]):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
disable (list): Names of the pipeline components to disable.
RETURNS (Language): The `Language` object.
"""
deserializers = OrderedDict((
('vocab', lambda b: self.vocab.from_bytes(b)),
('tokenizer', lambda b: self.tokenizer.from_bytes(b, vocab=False)),
('meta', lambda b: self.meta.update(ujson.loads(b)))
))
for i, (name, proc) in enumerate(self.pipeline):
if name in disable:
continue
if not hasattr(proc, 'from_bytes'):
continue
deserializers[i] = lambda b, proc=proc: proc.from_bytes(b, vocab=False)
msg = util.from_bytes(bytes_data, deserializers, {})
return self
class DisabledPipes(list):
'''Manager for temporary pipeline disabling.'''
def __init__(self, nlp, *names):
self.nlp = nlp
self.names = names
# Important! Not deep copy -- we just want the container (but we also
# want to support people providing arbitrarily typed nlp.pipeline
# objects.)
self.original_pipeline = copy.copy(nlp.pipeline)
list.__init__(self)
self.extend(nlp.remove_pipe(name) for name in names)
def __enter__(self):
return self
def __exit__(self, *args):
self.restore()
def restore(self):
'''Restore the pipeline to its state when DisabledPipes was created.'''
current, self.nlp.pipeline = self.nlp.pipeline, self.original_pipeline
unexpected = [name for name, pipe in current if not self.nlp.has_pipe(name)]
if unexpected:
# Don't change the pipeline if we're raising an error.
self.nlp.pipeline = current
msg = (
"Some current components would be lost when restoring "
"previous pipeline state. If you added components after "
"calling nlp.disable_pipes(), you should remove them "
"explicitly with nlp.remove_pipe() before the pipeline is "
"restore. Names of the new components: %s"
)
raise ValueError(msg % unexpected)
self[:] = []
def unpickle_language(vocab, meta, bytes_data):
lang = Language(vocab=vocab)
lang.from_bytes(bytes_data)
return lang
def _pipe(func, docs):
for doc in docs:
func(doc)
yield doc