spaCy/website/docs/api/phrasematcher.mdx
2022-11-29 02:33:27 +01:00

176 lines
8.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: PhraseMatcher
teaser: Match sequences of tokens, based on documents
tag: class
source: spacy/matcher/phrasematcher.pyx
new: 2
---
The `PhraseMatcher` lets you efficiently match large terminology lists. While
the [`Matcher`](/api/matcher) lets you match sequences based on lists of token
descriptions, the `PhraseMatcher` accepts match patterns in the form of `Doc`
objects. See the [usage guide](/usage/rule-based-matching#phrasematcher) for
examples.
## PhraseMatcher.\_\_init\_\_ {#init tag="method"}
Create the rule-based `PhraseMatcher`. Setting a different `attr` to match on
will change the token attributes that will be compared to determine a match. By
default, the incoming `Doc` is checked for sequences of tokens with the same
`ORTH` value, i.e. the verbatim token text. Matching on the attribute `LOWER`
will result in case-insensitive matching, since only the lowercase token texts
are compared. In theory, it's also possible to match on sequences of the same
part-of-speech tags or dependency labels.
If `validate=True` is set, additional validation is performed when pattern are
added. At the moment, it will check whether a `Doc` has attributes assigned that
aren't necessary to produce the matches (for example, part-of-speech tags if the
`PhraseMatcher` matches on the token text). Since this can often lead to
significantly worse performance when creating the pattern, a `UserWarning` will
be shown.
> #### Example
>
> ```python
> from spacy.matcher import PhraseMatcher
> matcher = PhraseMatcher(nlp.vocab)
> ```
| Name | Description |
| ---------- | ------------------------------------------------------------------------------------------------------ |
| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ |
| `attr` | The token attribute to match on. Defaults to `ORTH`, i.e. the verbatim token text. ~~Union[int, str]~~ |
| `validate` | Validate patterns added to the matcher. ~~bool~~ |
## PhraseMatcher.\_\_call\_\_ {#call tag="method"}
Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
> #### Example
>
> ```python
> from spacy.matcher import PhraseMatcher
>
> matcher = PhraseMatcher(nlp.vocab)
> matcher.add("OBAMA", [nlp("Barack Obama")])
> doc = nlp("Barack Obama lifts America one last time in emotional farewell")
> matches = matcher(doc)
> ```
| Name | Description |
| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
<Infobox title="Note on retrieving the string representation of the match_id" variant="warning">
Because spaCy stores all strings as integers, the `match_id` you get back will
be an integer, too but you can always get the string representation by looking
it up in the vocabulary's `StringStore`, i.e. `nlp.vocab.strings`:
```python
match_id_string = nlp.vocab.strings[match_id]
```
</Infobox>
## PhraseMatcher.\_\_len\_\_ {#len tag="method"}
Get the number of rules added to the matcher. Note that this only returns the
number of rules (identical with the number of IDs), not the number of individual
patterns.
> #### Example
>
> ```python
> matcher = PhraseMatcher(nlp.vocab)
> assert len(matcher) == 0
> matcher.add("OBAMA", [nlp("Barack Obama")])
> assert len(matcher) == 1
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The number of rules. ~~int~~ |
## PhraseMatcher.\_\_contains\_\_ {#contains tag="method"}
Check whether the matcher contains rules for a match ID.
> #### Example
>
> ```python
> matcher = PhraseMatcher(nlp.vocab)
> assert "OBAMA" not in matcher
> matcher.add("OBAMA", [nlp("Barack Obama")])
> assert "OBAMA" in matcher
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------- |
| `key` | The match ID. ~~str~~ |
| **RETURNS** | Whether the matcher contains rules for this match ID. ~~bool~~ |
## PhraseMatcher.add {#add tag="method"}
Add a rule to the matcher, consisting of an ID key, one or more patterns, and a
callback function to act on the matches. The callback function will receive the
arguments `matcher`, `doc`, `i` and `matches`. If a pattern already exists for
the given ID, the patterns will be extended. An `on_match` callback will be
overwritten.
> #### Example
>
> ```python
> def on_match(matcher, doc, id, matches):
> print('Matched!', matches)
>
> matcher = PhraseMatcher(nlp.vocab)
> matcher.add("OBAMA", [nlp("Barack Obama")], on_match=on_match)
> matcher.add("HEALTH", [nlp("health care reform"), nlp("healthcare reform")], on_match=on_match)
> doc = nlp("Barack Obama urges Congress to find courage to defend his healthcare reforms")
> matches = matcher(doc)
> ```
<Infobox title="Changed in v3.0" variant="warning">
As of spaCy v3.0, `PhraseMatcher.add` takes a list of patterns as the second
argument (instead of a variable number of arguments). The `on_match` callback
becomes an optional keyword argument.
```diff
patterns = [nlp("health care reform"), nlp("healthcare reform")]
- matcher.add("HEALTH", on_match, *patterns)
+ matcher.add("HEALTH", patterns, on_match=on_match)
```
</Infobox>
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `key` | An ID for the thing you're matching. ~~str~~ |
| `docs` | `Doc` objects of the phrases to match. ~~List[Doc]~~ |
| _keyword-only_ | |
| `on_match` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. ~~Optional[Callable[[Matcher, Doc, int, List[tuple], Any]]~~ |
## PhraseMatcher.remove {#remove tag="method" new="2.2"}
Remove a rule from the matcher by match ID. A `KeyError` is raised if the key
does not exist.
> #### Example
>
> ```python
> matcher = PhraseMatcher(nlp.vocab)
> matcher.add("OBAMA", [nlp("Barack Obama")])
> assert "OBAMA" in matcher
> matcher.remove("OBAMA")
> assert "OBAMA" not in matcher
> ```
| Name | Description |
| ----- | --------------------------------- |
| `key` | The ID of the match rule. ~~str~~ |