mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-31 20:38:20 +03:00
94 lines
2.8 KiB
Python
94 lines
2.8 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
from spacy.pipeline import EntityRecognizer
|
|
from spacy.vocab import Vocab
|
|
from spacy.syntax.ner import BiluoPushDown
|
|
from spacy.gold import GoldParse
|
|
from spacy.tokens import Doc
|
|
|
|
|
|
@pytest.fixture
|
|
def vocab():
|
|
return Vocab()
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(vocab):
|
|
return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_annots(doc):
|
|
casey = doc[0:1]
|
|
ny = doc[3:5]
|
|
return [
|
|
(casey.start_char, casey.end_char, "PERSON"),
|
|
(ny.start_char, ny.end_char, "GPE"),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_types(entity_annots):
|
|
return sorted(set([label for (s, e, label) in entity_annots]))
|
|
|
|
|
|
@pytest.fixture
|
|
def tsys(vocab, entity_types):
|
|
actions = BiluoPushDown.get_actions(entity_types=entity_types)
|
|
return BiluoPushDown(vocab.strings, actions)
|
|
|
|
|
|
def test_get_oracle_moves(tsys, doc, entity_annots):
|
|
gold = GoldParse(doc, entities=entity_annots)
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
|
|
|
|
|
|
def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
|
|
entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
|
|
gold = GoldParse(doc, entities=entity_annots)
|
|
for i, tag in enumerate(gold.ner):
|
|
if tag == "L-!GPE":
|
|
gold.ner[i] = "-"
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_get_oracle_moves_negative_entities2(tsys, vocab):
|
|
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
|
gold = GoldParse(doc, entities=[])
|
|
gold.ner = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"]
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_get_oracle_moves_negative_O(tsys, vocab):
|
|
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
|
gold = GoldParse(doc, entities=[])
|
|
gold.ner = ["O", "!O", "O", "!O"]
|
|
tsys.preprocess_gold(gold)
|
|
act_classes = tsys.get_oracle_sequence(doc, gold)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
|
|
|
|
def test_doc_add_entities_set_ents_iob(en_vocab):
|
|
doc = Doc(en_vocab, words=["This", "is", "a", "lion"])
|
|
ner = EntityRecognizer(en_vocab)
|
|
ner.begin_training([])
|
|
ner(doc)
|
|
assert len(list(doc.ents)) == 0
|
|
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
|
|
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
|
|
assert [w.ent_iob_ for w in doc] == ["", "", "", "B"]
|
|
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
|
|
assert [w.ent_iob_ for w in doc] == ["B", "I", "", ""]
|