mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Fix `get_loss` to use NER annotation * Add labels as part of cfg * Add simple overfitting test
		
			
				
	
	
		
			46 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from spacy.lang.en import English
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy import util
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
 | 
						|
    ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the SimpleNER component - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for ent in annotations.get("entities"):
 | 
						|
            ner.add_label(ent[2])
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["ner"] < 0.0001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like London."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    ents = doc.ents
 | 
						|
    assert len(ents) == 1
 | 
						|
    assert ents[0].text == "London"
 | 
						|
    assert ents[0].label_ == "LOC"
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        ents2 = doc2.ents
 | 
						|
        assert len(ents2) == 1
 | 
						|
        assert ents2[0].text == "London"
 | 
						|
        assert ents2[0].label_ == "LOC"
 |