spaCy/spacy/ml/_precomputable_affine.py
Sofie Van Landeghem 311133e579
Train textcat with config (#5143)
* bring back default build_text_classifier method

* remove _set_dims_ hack in favor of proper dim inference

* add tok2vec initialize to unit test

* small fixes

* add unit test for various textcat config settings

* logistic output layer does not have nO

* fix window_size setting

* proper fix

* fix W initialization

* Update textcat training example

* Use ml_datasets
* Convert training data to `Example` format
* Use `n_texts` to set proportionate dev size

* fix _init renaming on latest thinc

* avoid setting a non-existing dim

* update to thinc==8.0.0a2

* add BOW and CNN defaults for easy testing

* various experiments with train_textcat script, fix softmax activation in textcat bow

* allow textcat train script to work on other datasets as well

* have dataset as a parameter

* train textcat from config, with example config

* add config for training textcat

* formatting

* fix exclusive_classes

* fixing BOW for GPU

* bump thinc to 8.0.0a3 (not published yet so CI will fail)

* add in link_vectors_to_models which got deleted

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2020-03-29 19:40:36 +02:00

167 lines
5.6 KiB
Python

from thinc.api import Model, normal_init
def PrecomputableAffine(nO, nI, nF, nP):
model = Model(
"precomputable_affine",
forward,
init=init,
dims={"nO": nO, "nI": nI, "nF": nF, "nP": nP},
params={"W": None, "b": None, "pad": None},
)
model.initialize()
return model
def forward(model, X, is_train):
nF = model.get_dim("nF")
nO = model.get_dim("nO")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.get_param("W")
Yf = model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True)
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
Yf = model.ops.xp.vstack((model.get_param("pad"), Yf))
def backward(dY_ids):
# This backprop is particularly tricky, because we get back a different
# thing from what we put out. We put out an array of shape:
# (nB, nF, nO, nP), and get back:
# (nB, nO, nP) and ids (nB, nF)
# The ids tell us the values of nF, so we would have:
#
# dYf = zeros((nB, nF, nO, nP))
# for b in range(nB):
# for f in range(nF):
# dYf[b, ids[b, f]] += dY[b]
#
# However, we avoid building that array for efficiency -- and just pass
# in the indices.
dY, ids = dY_ids
assert dY.ndim == 3
assert dY.shape[1] == nO, dY.shape
assert dY.shape[2] == nP, dY.shape
# nB = dY.shape[0]
model.inc_grad("pad", _backprop_precomputable_affine_padding(model, dY, ids))
Xf = X[ids]
Xf = Xf.reshape((Xf.shape[0], nF * nI))
model.inc_grad("b", dY.sum(axis=0))
dY = dY.reshape((dY.shape[0], nO * nP))
Wopfi = W.transpose((1, 2, 0, 3))
Wopfi = model.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((nO * nP, nF * nI))
dXf = model.ops.gemm(dY.reshape((dY.shape[0], nO * nP)), Wopfi)
# Reuse the buffer
dWopfi = Wopfi
dWopfi.fill(0.0)
model.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
dWopfi = dWopfi.reshape((nO, nP, nF, nI))
# (o, p, f, i) --> (f, o, p, i)
model.inc_grad("W", dWopfi.transpose((2, 0, 1, 3)))
return dXf.reshape((dXf.shape[0], nF, nI))
return Yf, backward
def _backprop_precomputable_affine_padding(model, dY, ids):
nB = dY.shape[0]
nF = model.get_dim("nF")
nP = model.get_dim("nP")
nO = model.get_dim("nO")
# Backprop the "padding", used as a filler for missing values.
# Values that are missing are set to -1, and each state vector could
# have multiple missing values. The padding has different values for
# different missing features. The gradient of the padding vector is:
#
# for b in range(nB):
# for f in range(nF):
# if ids[b, f] < 0:
# d_pad[0, f] += dY[b]
#
# Which can be rewritten as:
#
# for b in range(nB):
# d_pad[0, ids[b] < 0] += dY[b]
#
# I don't know how to avoid the loop without building a whole array :(.
# Cursed numpy.
#
# Note by Sofie: rewritten to longer loop because "CuPy only supports slices that consist of one boolean array."
d_pad = model.ops.alloc((1, nF, nO, nP))
for b in range(nB):
for f in range(nF):
if ids[b, f] < 0:
d_pad[0, f] += dY[b]
return d_pad
def init(model, X=None, Y=None):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
if model.has_param("W") and model.get_param("W").any():
return
nF = model.get_dim("nF")
nO = model.get_dim("nO")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.ops.alloc4f(nF, nO, nP, nI)
b = model.ops.alloc2f(nO, nP)
pad = model.ops.alloc4f(1, nF, nO, nP)
ops = model.ops
W = normal_init(ops, W.shape, fan_in=nF * nI)
model.set_param("W", W)
model.set_param("b", b)
model.set_param("pad", pad)
ids = ops.alloc((5000, nF), dtype="f")
ids += ops.xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.alloc((5000, nI), dtype="f")
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model.predict(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.alloc((ids.shape[0], nO * nP), dtype="f")
# need nS vectors
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nO * nP))
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], nO, nP))
vectors += b
vectors = model.ops.asarray(vectors)
if nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
W = model.get_param("W").copy()
b = model.get_param("b").copy()
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
W /= model.ops.xp.sqrt(var)
model.set_param("W", W)
elif abs(mean) >= tol_mean:
b -= mean
model.set_param("b", b)
else:
break