mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			174 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //-  Docs > Quickstart > Usage Examples
 | |
| //- ============================================================================
 | |
| 
 | |
| +section('examples')
 | |
|     +h2('examples').
 | |
|         Usage Examples
 | |
| 
 | |
|     +h3('examples-resources') Load resources and process text
 | |
| 
 | |
|     +code.
 | |
|         from spacy.en import English
 | |
|         nlp = English()
 | |
|         doc = nlp(u'Hello, world. Here are two sentences.')
 | |
| 
 | |
|     +h3('multi-threaded') Multi-threaded generator (using OpenMP. No GIL!)
 | |
| 
 | |
|     +code.
 | |
|         texts = [u'One document.', u'...', u'Lots of documents']
 | |
|         # .pipe streams input, and produces streaming output
 | |
|         iter_texts = (texts[i % 3] for i in xrange(100000000))
 | |
|         for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=4)):
 | |
|             assert doc.is_parsed
 | |
|             if i == 100:
 | |
|                 break
 | |
| 
 | |
|     +h3('examples-tokens-sentences') Get tokens and sentences
 | |
| 
 | |
|     +code.
 | |
|         token = doc[0]
 | |
|         sentence = next(doc.sents)
 | |
|         assert token is sentence[0]
 | |
|         assert sentence.text == 'Hello, world.'
 | |
| 
 | |
|     +h3('examples-integer-ids') Use integer IDs for any string
 | |
| 
 | |
|     +code.
 | |
|         hello_id = nlp.vocab.strings['Hello']
 | |
|         hello_str = nlp.vocab.strings[hello_id]
 | |
| 
 | |
|         assert token.orth  == hello_id  == 3125
 | |
|         assert token.orth_ == hello_str == 'Hello'
 | |
| 
 | |
|     +h3('examples-string-views-flags') Get and set string views and flags
 | |
| 
 | |
|     +code.
 | |
|         assert token.shape_ == 'Xxxxx'
 | |
|         for lexeme in nlp.vocab:
 | |
|             if lexeme.is_alpha:
 | |
|                 lexeme.shape_ = 'W'
 | |
|             elif lexeme.is_digit:
 | |
|                 lexeme.shape_ = 'D'
 | |
|             elif lexeme.is_punct:
 | |
|                 lexeme.shape_ = 'P'
 | |
|             else:
 | |
|                 lexeme.shape_ = 'M'
 | |
|         assert token.shape_ == 'W'
 | |
| 
 | |
|     +h3('examples-numpy-arrays') Export to numpy arrays
 | |
| 
 | |
|     +code.
 | |
|         from spacy.attrs import ORTH, LIKE_URL, IS_OOV
 | |
| 
 | |
|         attr_ids = [ORTH, LIKE_URL, IS_OOV]
 | |
|         doc_array = doc.to_array(attr_ids)
 | |
|         assert doc_array.shape == (len(doc), len(attr_ids))
 | |
|         assert doc[0].orth == doc_array[0, 0]
 | |
|         assert doc[1].orth == doc_array[1, 0]
 | |
|         assert doc[0].like_url == doc_array[0, 1]
 | |
|         assert list(doc_array[:, 1]) == [t.like_url for t in doc]
 | |
| 
 | |
|     +h3('examples-word-vectors') Word vectors
 | |
| 
 | |
|     +code.
 | |
|         doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
 | |
| 
 | |
|         apples = doc[0]
 | |
|         oranges = doc[2]
 | |
|         boots = doc[6]
 | |
|         hippos = doc[8]
 | |
| 
 | |
|         assert apples.similarity(oranges) > boots.similarity(hippos)
 | |
| 
 | |
|     +h3('examples-pos-tags') Part-of-speech tags
 | |
| 
 | |
|     +code.
 | |
|         from spacy.parts_of_speech import ADV
 | |
| 
 | |
|         def is_adverb(token):
 | |
|             return token.pos == spacy.parts_of_speech.ADV
 | |
| 
 | |
|         # These are data-specific, so no constants are provided. You have to look
 | |
|         # up the IDs from the StringStore.
 | |
|         NNS = nlp.vocab.strings['NNS']
 | |
|         NNPS = nlp.vocab.strings['NNPS']
 | |
|         def is_plural_noun(token):
 | |
|             return token.tag == NNS or token.tag == NNPS
 | |
| 
 | |
|         def print_coarse_pos(token):
 | |
|             print(token.pos_)
 | |
| 
 | |
|         def print_fine_pos(token):
 | |
|             print(token.tag_)
 | |
| 
 | |
|     +h3('examples-dependencies') Syntactic dependencies
 | |
| 
 | |
|     +code.
 | |
|         def dependency_labels_to_root(token):
 | |
|             '''Walk up the syntactic tree, collecting the arc labels.'''
 | |
|             dep_labels = []
 | |
|             while token.head is not token:
 | |
|                 dep_labels.append(token.dep)
 | |
|                 token = token.head
 | |
|             return dep_labels
 | |
| 
 | |
|     +h3('examples-entities') Named entities
 | |
| 
 | |
|     +code.
 | |
|         def iter_products(docs):
 | |
|             for doc in docs:
 | |
|                 for ent in doc.ents:
 | |
|                     if ent.label_ == 'PRODUCT':
 | |
|                         yield ent
 | |
| 
 | |
|         def word_is_in_entity(word):
 | |
|             return word.ent_type != 0
 | |
| 
 | |
|         def count_parent_verb_by_person(docs):
 | |
|             counts = defaultdict(defaultdict(int))
 | |
|             for doc in docs:
 | |
|                 for ent in doc.ents:
 | |
|                     if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
 | |
|                         counts[ent.orth_][ent.root.head.lemma_] += 1
 | |
|             return counts
 | |
| 
 | |
|     +h3('examples-inline') Calculate inline mark-up on original string
 | |
| 
 | |
|     +code.
 | |
|         def put_spans_around_tokens(doc, get_classes):
 | |
|             '''Given some function to compute class names, put each token in a
 | |
|             span element, with the appropriate classes computed.
 | |
| 
 | |
|             All whitespace is preserved, outside of the spans. (Yes, I know HTML
 | |
|             won't display it. But the point is no information is lost, so you can
 | |
|             calculate what you need, e.g. <br /> tags, <p> tags, etc.)
 | |
|             '''
 | |
|             output = []
 | |
|             template = '<span classes="{classes}">{word}</span>{space}'
 | |
|             for token in doc:
 | |
|                 if token.is_space:
 | |
|                     output.append(token.orth_)
 | |
|                 else:
 | |
|                     output.append(
 | |
|                       template.format(
 | |
|                         classes=' '.join(get_classes(token)),
 | |
|                         word=token.orth_,
 | |
|                         space=token.whitespace_))
 | |
|             string = ''.join(output)
 | |
|             string = string.replace('\n', '')
 | |
|             string = string.replace('\t', '    ')
 | |
|             return string
 | |
| 
 | |
|     +h3('examples-binary') Efficient binary serialization
 | |
| 
 | |
|     +code.
 | |
|         from spacy.tokens.doc import Doc
 | |
| 
 | |
|         byte_string = doc.to_bytes()
 | |
|         open('moby_dick.bin', 'wb').write(byte_string)
 | |
| 
 | |
|         nlp = spacy.en.English()
 | |
|         for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')):
 | |
|            doc = Doc(nlp.vocab)
 | |
|            doc.from_bytes(byte_string)
 |