mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 05:37:03 +03:00
0ab483037c
Also handle backwards-compatibility so the old commands don't break
169 lines
5.9 KiB
Python
169 lines
5.9 KiB
Python
from pathlib import Path
|
|
from wasabi import msg
|
|
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
|
|
|
|
from ._util import Arg, Opt, debug_cli
|
|
from .. import util
|
|
from ..lang.en import English
|
|
|
|
|
|
@debug_cli.command("model")
|
|
def debug_model_cli(
|
|
# fmt: off
|
|
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
|
layers: str = Opt("", "--layers", "-l", help="Comma-separated names of pipeline components to train"),
|
|
dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
|
|
parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
|
|
gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
|
|
attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
|
|
P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
|
|
P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
|
|
P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
|
|
P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"),
|
|
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"),
|
|
seed: int = Opt(None, "--seed", "-s", help="Use GPU"),
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Analyze a Thinc model implementation. Includes checks for internal structure
|
|
and activations during training.
|
|
"""
|
|
print_settings = {
|
|
"dimensions": dimensions,
|
|
"parameters": parameters,
|
|
"gradients": gradients,
|
|
"attributes": attributes,
|
|
"layers": [int(x.strip()) for x in layers.split(",")] if layers else [],
|
|
"print_before_training": P0,
|
|
"print_after_init": P1,
|
|
"print_after_training": P2,
|
|
"print_prediction": P3,
|
|
}
|
|
|
|
if seed is not None:
|
|
msg.info(f"Fixing random seed: {seed}")
|
|
fix_random_seed(seed)
|
|
if use_gpu >= 0:
|
|
msg.info(f"Using GPU: {use_gpu}")
|
|
require_gpu(use_gpu)
|
|
else:
|
|
msg.info(f"Using CPU")
|
|
|
|
debug_model(
|
|
config_path, print_settings=print_settings,
|
|
)
|
|
|
|
|
|
def debug_model(config_path: Path, *, print_settings=None):
|
|
if print_settings is None:
|
|
print_settings = {}
|
|
|
|
model = util.load_config(config_path, create_objects=True)["model"]
|
|
|
|
# STEP 0: Printing before training
|
|
msg.info(f"Analysing model with ID {model.id}")
|
|
if print_settings.get("print_before_training"):
|
|
msg.info(f"Before training:")
|
|
_print_model(model, print_settings)
|
|
|
|
# STEP 1: Initializing the model and printing again
|
|
model.initialize(X=_get_docs(), Y=_get_output(model.ops.xp))
|
|
if print_settings.get("print_after_init"):
|
|
msg.info(f"After initialization:")
|
|
_print_model(model, print_settings)
|
|
|
|
# STEP 2: Updating the model and printing again
|
|
optimizer = Adam(0.001)
|
|
set_dropout_rate(model, 0.2)
|
|
for e in range(3):
|
|
Y, get_dX = model.begin_update(_get_docs())
|
|
dY = get_gradient(model, Y)
|
|
get_dX(dY)
|
|
model.finish_update(optimizer)
|
|
if print_settings.get("print_after_training"):
|
|
msg.info(f"After training:")
|
|
_print_model(model, print_settings)
|
|
|
|
# STEP 3: the final prediction
|
|
prediction = model.predict(_get_docs())
|
|
if print_settings.get("print_prediction"):
|
|
msg.info(f"Prediction:", str(prediction))
|
|
|
|
|
|
def get_gradient(model, Y):
|
|
goldY = _get_output(model.ops.xp)
|
|
return Y - goldY
|
|
|
|
|
|
def _sentences():
|
|
return [
|
|
"Apple is looking at buying U.K. startup for $1 billion",
|
|
"Autonomous cars shift insurance liability toward manufacturers",
|
|
"San Francisco considers banning sidewalk delivery robots",
|
|
"London is a big city in the United Kingdom.",
|
|
]
|
|
|
|
|
|
def _get_docs():
|
|
nlp = English()
|
|
return list(nlp.pipe(_sentences()))
|
|
|
|
|
|
def _get_output(xp):
|
|
return xp.asarray(
|
|
[
|
|
xp.asarray([i + 10, i + 20, i + 30], dtype="float32")
|
|
for i, _ in enumerate(_get_docs())
|
|
]
|
|
)
|
|
|
|
|
|
def _print_model(model, print_settings):
|
|
layers = print_settings.get("layers", "")
|
|
parameters = print_settings.get("parameters", False)
|
|
dimensions = print_settings.get("dimensions", False)
|
|
gradients = print_settings.get("gradients", False)
|
|
attributes = print_settings.get("attributes", False)
|
|
|
|
for i, node in enumerate(model.walk()):
|
|
if not layers or i in layers:
|
|
msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
|
|
|
|
if dimensions:
|
|
for name in node.dim_names:
|
|
if node.has_dim(name):
|
|
msg.info(f" - dim {name}: {node.get_dim(name)}")
|
|
else:
|
|
msg.info(f" - dim {name}: {node.has_dim(name)}")
|
|
|
|
if parameters:
|
|
for name in node.param_names:
|
|
if node.has_param(name):
|
|
print_value = _print_matrix(node.get_param(name))
|
|
msg.info(f" - param {name}: {print_value}")
|
|
else:
|
|
msg.info(f" - param {name}: {node.has_param(name)}")
|
|
if gradients:
|
|
for name in node.param_names:
|
|
if node.has_grad(name):
|
|
print_value = _print_matrix(node.get_grad(name))
|
|
msg.info(f" - grad {name}: {print_value}")
|
|
else:
|
|
msg.info(f" - grad {name}: {node.has_grad(name)}")
|
|
if attributes:
|
|
attrs = node.attrs
|
|
for name, value in attrs.items():
|
|
msg.info(f" - attr {name}: {value}")
|
|
|
|
|
|
def _print_matrix(value):
|
|
if value is None or isinstance(value, bool):
|
|
return value
|
|
result = str(value.shape) + " - sample: "
|
|
sample_matrix = value
|
|
for d in range(value.ndim - 1):
|
|
sample_matrix = sample_matrix[0]
|
|
sample_matrix = sample_matrix[0:5]
|
|
result = result + str(sample_matrix)
|
|
return result
|