mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
9faea3ff10
* bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
146 lines
4.6 KiB
Python
146 lines
4.6 KiB
Python
# Semantic entailment/similarity with decomposable attention (using spaCy and Keras)
|
|
# Practical state-of-the-art textual entailment with spaCy and Keras
|
|
|
|
import numpy as np
|
|
from keras import layers, Model, models, optimizers
|
|
from keras import backend as K
|
|
|
|
def build_model(vectors, shape, settings):
|
|
max_length, nr_hidden, nr_class = shape
|
|
|
|
input1 = layers.Input(shape=(max_length,), dtype='int32', name='words1')
|
|
input2 = layers.Input(shape=(max_length,), dtype='int32', name='words2')
|
|
|
|
# embeddings (projected)
|
|
embed = create_embedding(vectors, max_length, nr_hidden)
|
|
|
|
a = embed(input1)
|
|
b = embed(input2)
|
|
|
|
# step 1: attend
|
|
F = create_feedforward(nr_hidden)
|
|
att_weights = layers.dot([F(a), F(b)], axes=-1)
|
|
|
|
G = create_feedforward(nr_hidden)
|
|
|
|
if settings['entail_dir'] == 'both':
|
|
norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
|
|
norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
|
|
alpha = layers.dot([norm_weights_a, a], axes=1)
|
|
beta = layers.dot([norm_weights_b, b], axes=1)
|
|
|
|
# step 2: compare
|
|
comp1 = layers.concatenate([a, beta])
|
|
comp2 = layers.concatenate([b, alpha])
|
|
v1 = layers.TimeDistributed(G)(comp1)
|
|
v2 = layers.TimeDistributed(G)(comp2)
|
|
|
|
# step 3: aggregate
|
|
v1_sum = layers.Lambda(sum_word)(v1)
|
|
v2_sum = layers.Lambda(sum_word)(v2)
|
|
concat = layers.concatenate([v1_sum, v2_sum])
|
|
|
|
elif settings['entail_dir'] == 'left':
|
|
norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
|
|
alpha = layers.dot([norm_weights_a, a], axes=1)
|
|
comp2 = layers.concatenate([b, alpha])
|
|
v2 = layers.TimeDistributed(G)(comp2)
|
|
v2_sum = layers.Lambda(sum_word)(v2)
|
|
concat = v2_sum
|
|
|
|
else:
|
|
norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
|
|
beta = layers.dot([norm_weights_b, b], axes=1)
|
|
comp1 = layers.concatenate([a, beta])
|
|
v1 = layers.TimeDistributed(G)(comp1)
|
|
v1_sum = layers.Lambda(sum_word)(v1)
|
|
concat = v1_sum
|
|
|
|
H = create_feedforward(nr_hidden)
|
|
out = H(concat)
|
|
out = layers.Dense(nr_class, activation='softmax')(out)
|
|
|
|
model = Model([input1, input2], out)
|
|
|
|
model.compile(
|
|
optimizer=optimizers.Adam(lr=settings['lr']),
|
|
loss='categorical_crossentropy',
|
|
metrics=['accuracy'])
|
|
|
|
return model
|
|
|
|
|
|
def create_embedding(vectors, max_length, projected_dim):
|
|
return models.Sequential([
|
|
layers.Embedding(
|
|
vectors.shape[0],
|
|
vectors.shape[1],
|
|
input_length=max_length,
|
|
weights=[vectors],
|
|
trainable=False),
|
|
|
|
layers.TimeDistributed(
|
|
layers.Dense(projected_dim,
|
|
activation=None,
|
|
use_bias=False))
|
|
])
|
|
|
|
def create_feedforward(num_units=200, activation='relu', dropout_rate=0.2):
|
|
return models.Sequential([
|
|
layers.Dense(num_units, activation=activation),
|
|
layers.Dropout(dropout_rate),
|
|
layers.Dense(num_units, activation=activation),
|
|
layers.Dropout(dropout_rate)
|
|
])
|
|
|
|
|
|
def normalizer(axis):
|
|
def _normalize(att_weights):
|
|
exp_weights = K.exp(att_weights)
|
|
sum_weights = K.sum(exp_weights, axis=axis, keepdims=True)
|
|
return exp_weights/sum_weights
|
|
return _normalize
|
|
|
|
def sum_word(x):
|
|
return K.sum(x, axis=1)
|
|
|
|
|
|
def test_build_model():
|
|
vectors = np.ndarray((100, 8), dtype='float32')
|
|
shape = (10, 16, 3)
|
|
settings = {'lr': 0.001, 'dropout': 0.2, 'gru_encode':True, 'entail_dir':'both'}
|
|
model = build_model(vectors, shape, settings)
|
|
|
|
|
|
def test_fit_model():
|
|
|
|
def _generate_X(nr_example, length, nr_vector):
|
|
X1 = np.ndarray((nr_example, length), dtype='int32')
|
|
X1 *= X1 < nr_vector
|
|
X1 *= 0 <= X1
|
|
X2 = np.ndarray((nr_example, length), dtype='int32')
|
|
X2 *= X2 < nr_vector
|
|
X2 *= 0 <= X2
|
|
return [X1, X2]
|
|
|
|
def _generate_Y(nr_example, nr_class):
|
|
ys = np.zeros((nr_example, nr_class), dtype='int32')
|
|
for i in range(nr_example):
|
|
ys[i, i % nr_class] = 1
|
|
return ys
|
|
|
|
vectors = np.ndarray((100, 8), dtype='float32')
|
|
shape = (10, 16, 3)
|
|
settings = {'lr': 0.001, 'dropout': 0.2, 'gru_encode':True, 'entail_dir':'both'}
|
|
model = build_model(vectors, shape, settings)
|
|
|
|
train_X = _generate_X(20, shape[0], vectors.shape[0])
|
|
train_Y = _generate_Y(20, shape[2])
|
|
dev_X = _generate_X(15, shape[0], vectors.shape[0])
|
|
dev_Y = _generate_Y(15, shape[2])
|
|
|
|
model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), epochs=5, batch_size=4)
|
|
|
|
|
|
__all__ = [build_model]
|