mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
202 lines
6.4 KiB
Plaintext
202 lines
6.4 KiB
Plaintext
//- 💫 DOCS > API > TOP-LEVEL > SPACY
|
|
|
|
+h(3, "spacy.load") spacy.load
|
|
+tag function
|
|
+tag-model
|
|
|
|
p
|
|
| Load a model via its #[+a("/usage/models#usage") shortcut link],
|
|
| the name of an installed
|
|
| #[+a("/usage/training#models-generating") model package], a unicode
|
|
| path or a #[code Path]-like object. spaCy will try resolving the load
|
|
| argument in this order. If a model is loaded from a shortcut link or
|
|
| package name, spaCy will assume it's a Python package and import it and
|
|
| call the model's own #[code load()] method. If a model is loaded from a
|
|
| path, spaCy will assume it's a data directory, read the language and
|
|
| pipeline settings off the meta.json and initialise the #[code Language]
|
|
| class. The data will be loaded in via
|
|
| #[+api("language#from_disk") #[code Language.from_disk()]].
|
|
|
|
+aside-code("Example").
|
|
nlp = spacy.load('en') # shortcut link
|
|
nlp = spacy.load('en_core_web_sm') # package
|
|
nlp = spacy.load('/path/to/en') # unicode path
|
|
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
|
|
|
|
nlp = spacy.load('en', disable=['parser', 'tagger'])
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code name]
|
|
+cell unicode or #[code Path]
|
|
+cell Model to load, i.e. shortcut link, package name or path.
|
|
|
|
+row
|
|
+cell #[code disable]
|
|
+cell list
|
|
+cell
|
|
| Names of pipeline components to
|
|
| #[+a("/usage/processing-pipelines#disabling") disable].
|
|
|
|
+row("foot")
|
|
+cell returns
|
|
+cell #[code Language]
|
|
+cell A #[code Language] object with the loaded model.
|
|
|
|
p
|
|
| Essentially, #[code spacy.load()] is a convenience wrapper that reads
|
|
| the language ID and pipeline components from a model's #[code meta.json],
|
|
| initialises the #[code Language] class, loads in the model data and
|
|
| returns it.
|
|
|
|
+code("Abstract example").
|
|
cls = util.get_lang_class(lang) # get language for ID, e.g. 'en'
|
|
nlp = cls() # initialise the language
|
|
for name in pipeline:
|
|
component = nlp.create_pipe(name) # create each pipeline component
|
|
nlp.add_pipe(component) # add component to pipeline
|
|
nlp.from_disk(model_data_path) # load in model data
|
|
|
|
+infobox("Changed in v2.0", "⚠️")
|
|
| As of spaCy 2.0, the #[code path] keyword argument is deprecated. spaCy
|
|
| will also raise an error if no model could be loaded and never just
|
|
| return an empty #[code Language] object. If you need a blank language,
|
|
| you can use the new function #[+api("spacy#blank") #[code spacy.blank()]]
|
|
| or import the class explicitly, e.g.
|
|
| #[code from spacy.lang.en import English].
|
|
|
|
+code-wrapper
|
|
+code-new nlp = spacy.load('/model')
|
|
+code-old nlp = spacy.load('en', path='/model')
|
|
|
|
+h(3, "spacy.blank") spacy.blank
|
|
+tag function
|
|
+tag-new(2)
|
|
|
|
p
|
|
| Create a blank model of a given language class. This function is the
|
|
| twin of #[code spacy.load()].
|
|
|
|
+aside-code("Example").
|
|
nlp_en = spacy.blank('en')
|
|
nlp_de = spacy.blank('de')
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code name]
|
|
+cell unicode
|
|
+cell
|
|
| #[+a("https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes") ISO code]
|
|
| of the language class to load.
|
|
|
|
+row
|
|
+cell #[code disable]
|
|
+cell list
|
|
+cell
|
|
| Names of pipeline components to
|
|
| #[+a("/usage/processing-pipelines#disabling") disable].
|
|
|
|
+row("foot")
|
|
+cell returns
|
|
+cell #[code Language]
|
|
+cell An empty #[code Language] object of the appropriate subclass.
|
|
|
|
|
|
+h(4, "spacy.info") spacy.info
|
|
+tag function
|
|
|
|
p
|
|
| The same as the #[+api("cli#info") #[code info] command]. Pretty-print
|
|
| information about your installation, models and local setup from within
|
|
| spaCy. To get the model meta data as a dictionary instead, you can
|
|
| use the #[code meta] attribute on your #[code nlp] object with a
|
|
| loaded model, e.g. #[code nlp.meta].
|
|
|
|
+aside-code("Example").
|
|
spacy.info()
|
|
spacy.info('en')
|
|
spacy.info('de', markdown=True)
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code model]
|
|
+cell unicode
|
|
+cell A model, i.e. shortcut link, package name or path (optional).
|
|
|
|
+row
|
|
+cell #[code markdown]
|
|
+cell bool
|
|
+cell Print information as Markdown.
|
|
|
|
|
|
+h(3, "spacy.explain") spacy.explain
|
|
+tag function
|
|
|
|
p
|
|
| Get a description for a given POS tag, dependency label or entity type.
|
|
| For a list of available terms, see
|
|
| #[+src(gh("spacy", "spacy/glossary.py")) #[code glossary.py]].
|
|
|
|
+aside-code("Example").
|
|
spacy.explain(u'NORP')
|
|
# Nationalities or religious or political groups
|
|
|
|
doc = nlp(u'Hello world')
|
|
for word in doc:
|
|
print(word.text, word.tag_, spacy.explain(word.tag_))
|
|
# Hello UH interjection
|
|
# world NN noun, singular or mass
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row
|
|
+cell #[code term]
|
|
+cell unicode
|
|
+cell Term to explain.
|
|
|
|
+row("foot")
|
|
+cell returns
|
|
+cell unicode
|
|
+cell The explanation, or #[code None] if not found in the glossary.
|
|
|
|
+h(3, "spacy.prefer_gpu") spacy.prefer_gpu
|
|
+tag function
|
|
+tag-new("2.0.14")
|
|
|
|
p
|
|
| Allocate data and perform operations on #[+a("/usage/#gpu") GPU], if
|
|
| available. If data has already been allocated on CPU, it will not be
|
|
| moved. Ideally, this function should be called right after
|
|
| importing spaCy and #[em before] loading any models.
|
|
|
|
+aside-code("Example").
|
|
import spacy
|
|
activated = spacy.prefer_gpu()
|
|
nlp = spacy.load('en_core_web_sm')
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row("foot")
|
|
+cell returns
|
|
+cell bool
|
|
+cell Whether the GPU was activated.
|
|
|
|
+h(3, "spacy.require_gpu") spacy.require_gpu
|
|
+tag function
|
|
+tag-new("2.0.14")
|
|
|
|
p
|
|
| Allocate data and perform operations on #[+a("/usage/#gpu") GPU]. Will
|
|
| raise an error if no GPU is available. If data has already been allocated
|
|
| on CPU, it will not be moved. Ideally, this function should be called
|
|
| right after importing spaCy and #[em before] loading any models.
|
|
|
|
+aside-code("Example").
|
|
import spacy
|
|
spacy.require_gpu()
|
|
nlp = spacy.load('en_core_web_sm')
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
+row("foot")
|
|
+cell returns
|
|
+cell bool
|
|
+cell #[code True]
|