mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
from spacy.kb import KnowledgeBase
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.pipeline import EntityRuler
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def nlp():
 | 
						|
    return English()
 | 
						|
 | 
						|
 | 
						|
def test_kb_valid_entities(nlp):
 | 
						|
    """Test the valid construction of a KB with 3 entities and two aliases"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.5, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2])
 | 
						|
    mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9])
 | 
						|
 | 
						|
    # test the size of the corresponding KB
 | 
						|
    assert(mykb.get_size_entities() == 3)
 | 
						|
    assert(mykb.get_size_aliases() == 2)
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_entities(nlp):
 | 
						|
    """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because one of the given IDs is not valid
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(alias='douglas', entities=['Q2', 'Q342'], probabilities=[0.8, 0.2])
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_probabilities(nlp):
 | 
						|
    """Test the invalid construction of a KB with wrong prior probabilities"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because the sum of the probabilities exceeds 1
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.4])
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_combination(nlp):
 | 
						|
    """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.3, 0.4, 0.1])
 | 
						|
 | 
						|
 | 
						|
def test_kb_invalid_entity_vector(nlp):
 | 
						|
    """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1, 2, 3])
 | 
						|
 | 
						|
    # this should fail because the kb's expected entity vector length is 3
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
 | 
						|
 | 
						|
 | 
						|
def test_candidate_generation(nlp):
 | 
						|
    """Test correct candidate generation"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
 | 
						|
    mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2])
 | 
						|
    mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9])
 | 
						|
 | 
						|
    # test the size of the relevant candidates
 | 
						|
    assert(len(mykb.get_candidates('douglas')) == 2)
 | 
						|
    assert(len(mykb.get_candidates('adam')) == 1)
 | 
						|
    assert(len(mykb.get_candidates('shrubbery')) == 0)
 | 
						|
 | 
						|
 | 
						|
def test_preserving_links_asdoc(nlp):
 | 
						|
    """Test that Span.as_doc preserves the existing entity links"""
 | 
						|
    mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
 | 
						|
    # adding entities
 | 
						|
    mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
 | 
						|
    mykb.add_entity(entity='Q2', prob=0.8, entity_vector=[1])
 | 
						|
 | 
						|
    # adding aliases
 | 
						|
    mykb.add_alias(alias='Boston', entities=['Q1'], probabilities=[0.7])
 | 
						|
    mykb.add_alias(alias='Denver', entities=['Q2'], probabilities=[0.6])
 | 
						|
 | 
						|
    # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | 
						|
    sentencizer = nlp.create_pipe("sentencizer")
 | 
						|
    nlp.add_pipe(sentencizer)
 | 
						|
 | 
						|
    ruler = EntityRuler(nlp)
 | 
						|
    patterns = [{"label": "GPE", "pattern": "Boston"},
 | 
						|
                {"label": "GPE", "pattern": "Denver"}]
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
    nlp.add_pipe(ruler)
 | 
						|
 | 
						|
    el_pipe = nlp.create_pipe(name='entity_linker', config={"context_width": 64})
 | 
						|
    el_pipe.set_kb(mykb)
 | 
						|
    el_pipe.begin_training()
 | 
						|
    el_pipe.context_weight = 0
 | 
						|
    el_pipe.prior_weight = 1
 | 
						|
    nlp.add_pipe(el_pipe, last=True)
 | 
						|
 | 
						|
    # test whether the entity links are preserved by the `as_doc()` function
 | 
						|
    text = "She lives in Boston. He lives in Denver."
 | 
						|
    doc = nlp(text)
 | 
						|
    for ent in doc.ents:
 | 
						|
        orig_text = ent.text
 | 
						|
        orig_kb_id = ent.kb_id_
 | 
						|
        sent_doc = ent.sent.as_doc()
 | 
						|
        for s_ent in sent_doc.ents:
 | 
						|
            if s_ent.text == orig_text:
 | 
						|
                assert s_ent.kb_id_ == orig_kb_id
 |