mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-30 20:06:30 +03:00
a06cbae70d
* precompute_hiddens/Parser: do not look up CPU ops `get_ops("cpu")` is quite expensive. To avoid this, we want to cache the result as in #11068. However, for 3.x we do not want to change the ABI. So we avoid the expensive lookup by using NumpyOps. This should have a minimal impact, since `get_ops("cpu")` was only used when the model ops were `CupyOps`. If the ops are `AppleOps`, we are still passing through the correct BLAS implementation. * _NUMPY_OPS -> NUMPY_OPS
493 lines
18 KiB
Cython
493 lines
18 KiB
Cython
# cython: infer_types=True, cdivision=True, boundscheck=False
|
|
cimport numpy as np
|
|
from libc.math cimport exp
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport calloc, free, realloc
|
|
from thinc.backends.linalg cimport Vec, VecVec
|
|
from thinc.backends.cblas cimport saxpy, sgemm
|
|
|
|
import numpy
|
|
import numpy.random
|
|
from thinc.api import Model, CupyOps, NumpyOps, get_ops
|
|
|
|
from .. import util
|
|
from ..errors import Errors
|
|
from ..typedefs cimport weight_t, class_t, hash_t
|
|
from ..pipeline._parser_internals.stateclass cimport StateClass
|
|
|
|
|
|
cdef WeightsC get_c_weights(model) except *:
|
|
cdef WeightsC output
|
|
cdef precompute_hiddens state2vec = model.state2vec
|
|
output.feat_weights = state2vec.get_feat_weights()
|
|
output.feat_bias = <const float*>state2vec.bias.data
|
|
cdef np.ndarray vec2scores_W
|
|
cdef np.ndarray vec2scores_b
|
|
if model.vec2scores is None:
|
|
output.hidden_weights = NULL
|
|
output.hidden_bias = NULL
|
|
else:
|
|
vec2scores_W = model.vec2scores.get_param("W")
|
|
vec2scores_b = model.vec2scores.get_param("b")
|
|
output.hidden_weights = <const float*>vec2scores_W.data
|
|
output.hidden_bias = <const float*>vec2scores_b.data
|
|
cdef np.ndarray class_mask = model._class_mask
|
|
output.seen_classes = <const float*>class_mask.data
|
|
return output
|
|
|
|
|
|
cdef SizesC get_c_sizes(model, int batch_size) except *:
|
|
cdef SizesC output
|
|
output.states = batch_size
|
|
if model.vec2scores is None:
|
|
output.classes = model.state2vec.get_dim("nO")
|
|
else:
|
|
output.classes = model.vec2scores.get_dim("nO")
|
|
output.hiddens = model.state2vec.get_dim("nO")
|
|
output.pieces = model.state2vec.get_dim("nP")
|
|
output.feats = model.state2vec.get_dim("nF")
|
|
output.embed_width = model.tokvecs.shape[1]
|
|
return output
|
|
|
|
|
|
cdef ActivationsC alloc_activations(SizesC n) nogil:
|
|
cdef ActivationsC A
|
|
memset(&A, 0, sizeof(A))
|
|
resize_activations(&A, n)
|
|
return A
|
|
|
|
|
|
cdef void free_activations(const ActivationsC* A) nogil:
|
|
free(A.token_ids)
|
|
free(A.scores)
|
|
free(A.unmaxed)
|
|
free(A.hiddens)
|
|
free(A.is_valid)
|
|
|
|
|
|
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|
if n.states <= A._max_size:
|
|
A._curr_size = n.states
|
|
return
|
|
if A._max_size == 0:
|
|
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
|
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
|
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
|
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
|
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
|
|
A._max_size = n.states
|
|
else:
|
|
A.token_ids = <int*>realloc(A.token_ids,
|
|
n.states * n.feats * sizeof(A.token_ids[0]))
|
|
A.scores = <float*>realloc(A.scores,
|
|
n.states * n.classes * sizeof(A.scores[0]))
|
|
A.unmaxed = <float*>realloc(A.unmaxed,
|
|
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
|
A.hiddens = <float*>realloc(A.hiddens,
|
|
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
|
A.is_valid = <int*>realloc(A.is_valid,
|
|
n.states * n.classes * sizeof(A.is_valid[0]))
|
|
A._max_size = n.states
|
|
A._curr_size = n.states
|
|
|
|
|
|
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
|
const WeightsC* W, SizesC n) nogil:
|
|
cdef double one = 1.0
|
|
resize_activations(A, n)
|
|
for i in range(n.states):
|
|
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
|
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
|
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
|
|
sum_state_features(cblas, A.unmaxed,
|
|
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
|
|
for i in range(n.states):
|
|
VecVec.add_i(&A.unmaxed[i*n.hiddens*n.pieces],
|
|
W.feat_bias, 1., n.hiddens * n.pieces)
|
|
for j in range(n.hiddens):
|
|
index = i * n.hiddens * n.pieces + j * n.pieces
|
|
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
|
|
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
|
memset(A.scores, 0, n.states * n.classes * sizeof(float))
|
|
if W.hidden_weights == NULL:
|
|
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
|
|
else:
|
|
# Compute hidden-to-output
|
|
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
|
1.0, <const float *>A.hiddens, n.hiddens,
|
|
<const float *>W.hidden_weights, n.hiddens,
|
|
0.0, A.scores, n.classes)
|
|
# Add bias
|
|
for i in range(n.states):
|
|
VecVec.add_i(&A.scores[i*n.classes],
|
|
W.hidden_bias, 1., n.classes)
|
|
# Set unseen classes to minimum value
|
|
i = 0
|
|
min_ = A.scores[0]
|
|
for i in range(1, n.states * n.classes):
|
|
if A.scores[i] < min_:
|
|
min_ = A.scores[i]
|
|
for i in range(n.states):
|
|
for j in range(n.classes):
|
|
if not W.seen_classes[j]:
|
|
A.scores[i*n.classes+j] = min_
|
|
|
|
|
|
cdef void sum_state_features(CBlas cblas, float* output,
|
|
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
|
cdef int idx, b, f, i
|
|
cdef const float* feature
|
|
padding = cached
|
|
cached += F * O
|
|
cdef int id_stride = F*O
|
|
cdef float one = 1.
|
|
for b in range(B):
|
|
for f in range(F):
|
|
if token_ids[f] < 0:
|
|
feature = &padding[f*O]
|
|
else:
|
|
idx = token_ids[f] * id_stride + f*O
|
|
feature = &cached[idx]
|
|
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
|
|
token_ids += F
|
|
|
|
|
|
cdef void cpu_log_loss(float* d_scores,
|
|
const float* costs, const int* is_valid, const float* scores,
|
|
int O) nogil:
|
|
"""Do multi-label log loss"""
|
|
cdef double max_, gmax, Z, gZ
|
|
best = arg_max_if_gold(scores, costs, is_valid, O)
|
|
guess = Vec.arg_max(scores, O)
|
|
if best == -1 or guess == -1:
|
|
# These shouldn't happen, but if they do, we want to make sure we don't
|
|
# cause an OOB access.
|
|
return
|
|
Z = 1e-10
|
|
gZ = 1e-10
|
|
max_ = scores[guess]
|
|
gmax = scores[best]
|
|
for i in range(O):
|
|
Z += exp(scores[i] - max_)
|
|
if costs[i] <= costs[best]:
|
|
gZ += exp(scores[i] - gmax)
|
|
for i in range(O):
|
|
if costs[i] <= costs[best]:
|
|
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
|
|
else:
|
|
d_scores[i] = exp(scores[i]-max_) / Z
|
|
|
|
|
|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
|
|
const int* is_valid, int n) nogil:
|
|
# Find minimum cost
|
|
cdef float cost = 1
|
|
for i in range(n):
|
|
if is_valid[i] and costs[i] < cost:
|
|
cost = costs[i]
|
|
# Now find best-scoring with that cost
|
|
cdef int best = -1
|
|
for i in range(n):
|
|
if costs[i] <= cost and is_valid[i]:
|
|
if best == -1 or scores[i] > scores[best]:
|
|
best = i
|
|
return best
|
|
|
|
|
|
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
|
cdef int best = -1
|
|
for i in range(n):
|
|
if is_valid[i] >= 1:
|
|
if best == -1 or scores[i] > scores[best]:
|
|
best = i
|
|
return best
|
|
|
|
|
|
|
|
class ParserStepModel(Model):
|
|
def __init__(self, docs, layers, *, has_upper, unseen_classes=None, train=True,
|
|
dropout=0.1):
|
|
Model.__init__(self, name="parser_step_model", forward=step_forward)
|
|
self.attrs["has_upper"] = has_upper
|
|
self.attrs["dropout_rate"] = dropout
|
|
self.tokvecs, self.bp_tokvecs = layers[0](docs, is_train=train)
|
|
if layers[1].get_dim("nP") >= 2:
|
|
activation = "maxout"
|
|
elif has_upper:
|
|
activation = None
|
|
else:
|
|
activation = "relu"
|
|
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
|
|
activation=activation, train=train)
|
|
if has_upper:
|
|
self.vec2scores = layers[-1]
|
|
else:
|
|
self.vec2scores = None
|
|
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
|
|
self.backprops = []
|
|
self._class_mask = numpy.zeros((self.nO,), dtype='f')
|
|
self._class_mask.fill(1)
|
|
if unseen_classes is not None:
|
|
for class_ in unseen_classes:
|
|
self._class_mask[class_] = 0.
|
|
|
|
def clear_memory(self):
|
|
del self.tokvecs
|
|
del self.bp_tokvecs
|
|
del self.state2vec
|
|
del self.backprops
|
|
del self._class_mask
|
|
|
|
@property
|
|
def nO(self):
|
|
if self.attrs["has_upper"]:
|
|
return self.vec2scores.get_dim("nO")
|
|
else:
|
|
return self.state2vec.get_dim("nO")
|
|
|
|
def class_is_unseen(self, class_):
|
|
return self._class_mask[class_]
|
|
|
|
def mark_class_unseen(self, class_):
|
|
self._class_mask[class_] = 0
|
|
|
|
def mark_class_seen(self, class_):
|
|
self._class_mask[class_] = 1
|
|
|
|
def get_token_ids(self, states):
|
|
cdef StateClass state
|
|
states = [state for state in states if not state.is_final()]
|
|
cdef np.ndarray ids = numpy.zeros((len(states), self.state2vec.nF),
|
|
dtype='i', order='C')
|
|
ids.fill(-1)
|
|
c_ids = <int*>ids.data
|
|
for state in states:
|
|
state.c.set_context_tokens(c_ids, ids.shape[1])
|
|
c_ids += ids.shape[1]
|
|
return ids
|
|
|
|
def backprop_step(self, token_ids, d_vector, get_d_tokvecs):
|
|
if isinstance(self.state2vec.ops, CupyOps) \
|
|
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
|
# Move token_ids and d_vector to GPU, asynchronously
|
|
self.backprops.append((
|
|
util.get_async(self.cuda_stream, token_ids),
|
|
util.get_async(self.cuda_stream, d_vector),
|
|
get_d_tokvecs
|
|
))
|
|
else:
|
|
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
|
|
|
|
|
def finish_steps(self, golds):
|
|
# Add a padding vector to the d_tokvecs gradient, so that missing
|
|
# values don't affect the real gradient.
|
|
d_tokvecs = self.ops.alloc((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
|
# Tells CUDA to block, so our async copies complete.
|
|
if self.cuda_stream is not None:
|
|
self.cuda_stream.synchronize()
|
|
for ids, d_vector, bp_vector in self.backprops:
|
|
d_state_features = bp_vector((d_vector, ids))
|
|
ids = ids.flatten()
|
|
d_state_features = d_state_features.reshape(
|
|
(ids.size, d_state_features.shape[2]))
|
|
self.ops.scatter_add(d_tokvecs, ids,
|
|
d_state_features)
|
|
# Padded -- see update()
|
|
self.bp_tokvecs(d_tokvecs[:-1])
|
|
return d_tokvecs
|
|
|
|
NUMPY_OPS = NumpyOps()
|
|
|
|
def step_forward(model: ParserStepModel, states, is_train):
|
|
token_ids = model.get_token_ids(states)
|
|
vector, get_d_tokvecs = model.state2vec(token_ids, is_train)
|
|
mask = None
|
|
if model.attrs["has_upper"]:
|
|
dropout_rate = model.attrs["dropout_rate"]
|
|
if is_train and dropout_rate > 0:
|
|
mask = NUMPY_OPS.get_dropout_mask(vector.shape, 0.1)
|
|
vector *= mask
|
|
scores, get_d_vector = model.vec2scores(vector, is_train)
|
|
else:
|
|
scores = NumpyOps().asarray(vector)
|
|
get_d_vector = lambda d_scores: d_scores
|
|
# If the class is unseen, make sure its score is minimum
|
|
scores[:, model._class_mask == 0] = numpy.nanmin(scores)
|
|
|
|
def backprop_parser_step(d_scores):
|
|
# Zero vectors for unseen classes
|
|
d_scores *= model._class_mask
|
|
d_vector = get_d_vector(d_scores)
|
|
if mask is not None:
|
|
d_vector *= mask
|
|
model.backprop_step(token_ids, d_vector, get_d_tokvecs)
|
|
return None
|
|
return scores, backprop_parser_step
|
|
|
|
|
|
cdef class precompute_hiddens:
|
|
"""Allow a model to be "primed" by pre-computing input features in bulk.
|
|
|
|
This is used for the parser, where we want to take a batch of documents,
|
|
and compute vectors for each (token, position) pair. These vectors can then
|
|
be reused, especially for beam-search.
|
|
|
|
Let's say we're using 12 features for each state, e.g. word at start of
|
|
buffer, three words on stack, their children, etc. In the normal arc-eager
|
|
system, a document of length N is processed in 2*N states. This means we'll
|
|
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
|
N*12 vector computations. The saving for beam-search is much better:
|
|
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
|
so we can save the factor k. This also gives a nice CPU/GPU division:
|
|
we can do all our hard maths up front, packed into large multiplications,
|
|
and do the hard-to-program parsing on the CPU.
|
|
"""
|
|
cdef readonly int nF, nO, nP
|
|
cdef bint _is_synchronized
|
|
cdef public object ops
|
|
cdef public object numpy_ops
|
|
cdef np.ndarray _features
|
|
cdef np.ndarray _cached
|
|
cdef np.ndarray bias
|
|
cdef object _cuda_stream
|
|
cdef object _bp_hiddens
|
|
cdef object activation
|
|
|
|
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
|
|
activation="maxout", train=False):
|
|
gpu_cached, bp_features = lower_model(tokvecs, train)
|
|
cdef np.ndarray cached
|
|
if not isinstance(gpu_cached, numpy.ndarray):
|
|
# Note the passing of cuda_stream here: it lets
|
|
# cupy make the copy asynchronously.
|
|
# We then have to block before first use.
|
|
cached = gpu_cached.get(stream=cuda_stream)
|
|
else:
|
|
cached = gpu_cached
|
|
if not isinstance(lower_model.get_param("b"), numpy.ndarray):
|
|
self.bias = lower_model.get_param("b").get(stream=cuda_stream)
|
|
else:
|
|
self.bias = lower_model.get_param("b")
|
|
self.nF = cached.shape[1]
|
|
if lower_model.has_dim("nP"):
|
|
self.nP = lower_model.get_dim("nP")
|
|
else:
|
|
self.nP = 1
|
|
self.nO = cached.shape[2]
|
|
self.ops = lower_model.ops
|
|
self.numpy_ops = NumpyOps()
|
|
assert activation in (None, "relu", "maxout")
|
|
self.activation = activation
|
|
self._is_synchronized = False
|
|
self._cuda_stream = cuda_stream
|
|
self._cached = cached
|
|
self._bp_hiddens = bp_features
|
|
|
|
cdef const float* get_feat_weights(self) except NULL:
|
|
if not self._is_synchronized and self._cuda_stream is not None:
|
|
self._cuda_stream.synchronize()
|
|
self._is_synchronized = True
|
|
return <float*>self._cached.data
|
|
|
|
def has_dim(self, name):
|
|
if name == "nF":
|
|
return self.nF if self.nF is not None else True
|
|
elif name == "nP":
|
|
return self.nP if self.nP is not None else True
|
|
elif name == "nO":
|
|
return self.nO if self.nO is not None else True
|
|
else:
|
|
return False
|
|
|
|
def get_dim(self, name):
|
|
if name == "nF":
|
|
return self.nF
|
|
elif name == "nP":
|
|
return self.nP
|
|
elif name == "nO":
|
|
return self.nO
|
|
else:
|
|
raise ValueError(Errors.E1033.format(name=name))
|
|
|
|
def set_dim(self, name, value):
|
|
if name == "nF":
|
|
self.nF = value
|
|
elif name == "nP":
|
|
self.nP = value
|
|
elif name == "nO":
|
|
self.nO = value
|
|
else:
|
|
raise ValueError(Errors.E1033.format(name=name))
|
|
|
|
def __call__(self, X, bint is_train):
|
|
if is_train:
|
|
return self.begin_update(X)
|
|
else:
|
|
return self.predict(X), lambda X: X
|
|
|
|
def predict(self, X):
|
|
return self.begin_update(X)[0]
|
|
|
|
def begin_update(self, token_ids):
|
|
cdef np.ndarray state_vector = numpy.zeros(
|
|
(token_ids.shape[0], self.nO, self.nP), dtype='f')
|
|
# This is tricky, but (assuming GPU available);
|
|
# - Input to forward on CPU
|
|
# - Output from forward on CPU
|
|
# - Input to backward on GPU!
|
|
# - Output from backward on GPU
|
|
bp_hiddens = self._bp_hiddens
|
|
|
|
cdef CBlas cblas
|
|
if isinstance(self.ops, CupyOps):
|
|
cblas = NUMPY_OPS.cblas()
|
|
else:
|
|
cblas = self.ops.cblas()
|
|
|
|
feat_weights = self.get_feat_weights()
|
|
cdef int[:, ::1] ids = token_ids
|
|
sum_state_features(cblas, <float*>state_vector.data,
|
|
feat_weights, &ids[0,0],
|
|
token_ids.shape[0], self.nF, self.nO*self.nP)
|
|
state_vector += self.bias
|
|
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
|
|
|
def backward(d_state_vector_ids):
|
|
d_state_vector, token_ids = d_state_vector_ids
|
|
d_state_vector = bp_nonlinearity(d_state_vector)
|
|
d_tokens = bp_hiddens((d_state_vector, token_ids))
|
|
return d_tokens
|
|
return state_vector, backward
|
|
|
|
def _nonlinearity(self, state_vector):
|
|
if self.activation == "maxout":
|
|
return self._maxout_nonlinearity(state_vector)
|
|
else:
|
|
return self._relu_nonlinearity(state_vector)
|
|
|
|
def _maxout_nonlinearity(self, state_vector):
|
|
state_vector, mask = self.numpy_ops.maxout(state_vector)
|
|
# We're outputting to CPU, but we need this variable on GPU for the
|
|
# backward pass.
|
|
mask = self.ops.asarray(mask)
|
|
|
|
def backprop_maxout(d_best):
|
|
return self.ops.backprop_maxout(d_best, mask, self.nP)
|
|
|
|
return state_vector, backprop_maxout
|
|
|
|
def _relu_nonlinearity(self, state_vector):
|
|
state_vector = state_vector.reshape((state_vector.shape[0], -1))
|
|
mask = state_vector >= 0.
|
|
state_vector *= mask
|
|
# We're outputting to CPU, but we need this variable on GPU for the
|
|
# backward pass.
|
|
mask = self.ops.asarray(mask)
|
|
|
|
def backprop_relu(d_best):
|
|
d_best *= mask
|
|
return d_best.reshape((d_best.shape + (1,)))
|
|
|
|
return state_vector, backprop_relu
|