mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
8c29268749
* Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
1035 lines
34 KiB
Cython
1035 lines
34 KiB
Cython
# cython: infer_types=True
|
||
from libc.string cimport memcpy
|
||
from cpython.mem cimport PyMem_Malloc, PyMem_Free
|
||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||
from cython.view cimport array as cvarray
|
||
cimport numpy as np
|
||
np.import_array()
|
||
|
||
import numpy
|
||
from thinc.api import get_array_module
|
||
import warnings
|
||
|
||
from ..typedefs cimport hash_t
|
||
from ..lexeme cimport Lexeme
|
||
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
||
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
|
||
from ..attrs cimport IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL
|
||
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
|
||
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
|
||
from ..symbols cimport conj
|
||
from .morphanalysis cimport MorphAnalysis
|
||
|
||
from .. import parts_of_speech
|
||
from .. import util
|
||
from ..errors import Errors, Warnings
|
||
from .underscore import Underscore, get_ext_args
|
||
|
||
|
||
cdef class Token:
|
||
"""An individual token – i.e. a word, punctuation symbol, whitespace,
|
||
etc.
|
||
|
||
DOCS: https://spacy.io/api/token
|
||
"""
|
||
@classmethod
|
||
def set_extension(cls, name, **kwargs):
|
||
"""Define a custom attribute which becomes available as `Token._`.
|
||
|
||
name (str): Name of the attribute to set.
|
||
default: Optional default value of the attribute.
|
||
getter (callable): Optional getter function.
|
||
setter (callable): Optional setter function.
|
||
method (callable): Optional method for method extension.
|
||
force (bool): Force overwriting existing attribute.
|
||
|
||
DOCS: https://spacy.io/api/token#set_extension
|
||
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
|
||
"""
|
||
if cls.has_extension(name) and not kwargs.get("force", False):
|
||
raise ValueError(Errors.E090.format(name=name, obj="Token"))
|
||
Underscore.token_extensions[name] = get_ext_args(**kwargs)
|
||
|
||
@classmethod
|
||
def get_extension(cls, name):
|
||
"""Look up a previously registered extension by name.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
|
||
|
||
DOCS: https://spacy.io/api/token#get_extension
|
||
"""
|
||
return Underscore.token_extensions.get(name)
|
||
|
||
@classmethod
|
||
def has_extension(cls, name):
|
||
"""Check whether an extension has been registered.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (bool): Whether the extension has been registered.
|
||
|
||
DOCS: https://spacy.io/api/token#has_extension
|
||
"""
|
||
return name in Underscore.token_extensions
|
||
|
||
@classmethod
|
||
def remove_extension(cls, name):
|
||
"""Remove a previously registered extension.
|
||
|
||
name (str): Name of the extension.
|
||
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
|
||
removed extension.
|
||
|
||
DOCS: https://spacy.io/api/token#remove_extension
|
||
"""
|
||
if not cls.has_extension(name):
|
||
raise ValueError(Errors.E046.format(name=name))
|
||
return Underscore.token_extensions.pop(name)
|
||
|
||
def __cinit__(self, Vocab vocab, Doc doc, int offset):
|
||
"""Construct a `Token` object.
|
||
|
||
vocab (Vocab): A storage container for lexical types.
|
||
doc (Doc): The parent document.
|
||
offset (int): The index of the token within the document.
|
||
|
||
DOCS: https://spacy.io/api/token#init
|
||
"""
|
||
self.vocab = vocab
|
||
self.doc = doc
|
||
self.c = &self.doc.c[offset]
|
||
self.i = offset
|
||
|
||
def __hash__(self):
|
||
return hash((self.doc, self.i))
|
||
|
||
def __len__(self):
|
||
"""The number of unicode characters in the token, i.e. `token.text`.
|
||
|
||
RETURNS (int): The number of unicode characters in the token.
|
||
|
||
DOCS: https://spacy.io/api/token#len
|
||
"""
|
||
return self.c.lex.length
|
||
|
||
def __unicode__(self):
|
||
return self.text
|
||
|
||
def __bytes__(self):
|
||
return self.text.encode('utf8')
|
||
|
||
def __str__(self):
|
||
return self.__unicode__()
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
def __richcmp__(self, Token other, int op):
|
||
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
|
||
if other is None:
|
||
if op in (0, 1, 2):
|
||
return False
|
||
else:
|
||
return True
|
||
cdef Doc my_doc = self.doc
|
||
cdef Doc other_doc = other.doc
|
||
my = self.idx
|
||
their = other.idx
|
||
if op == 0:
|
||
return my < their
|
||
elif op == 2:
|
||
if my_doc is other_doc:
|
||
return my == their
|
||
else:
|
||
return False
|
||
elif op == 4:
|
||
return my > their
|
||
elif op == 1:
|
||
return my <= their
|
||
elif op == 3:
|
||
if my_doc is other_doc:
|
||
return my != their
|
||
else:
|
||
return True
|
||
elif op == 5:
|
||
return my >= their
|
||
else:
|
||
raise ValueError(Errors.E041.format(op=op))
|
||
|
||
def __reduce__(self):
|
||
raise NotImplementedError(Errors.E111)
|
||
|
||
@property
|
||
def _(self):
|
||
"""Custom extension attributes registered via `set_extension`."""
|
||
return Underscore(Underscore.token_extensions, self,
|
||
start=self.idx, end=None)
|
||
|
||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||
"""Check the value of a boolean flag.
|
||
|
||
flag_id (int): The ID of the flag attribute.
|
||
RETURNS (bool): Whether the flag is set.
|
||
|
||
DOCS: https://spacy.io/api/token#check_flag
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, flag_id)
|
||
|
||
def nbor(self, int i=1):
|
||
"""Get a neighboring token.
|
||
|
||
i (int): The relative position of the token to get. Defaults to 1.
|
||
RETURNS (Token): The token at position `self.doc[self.i+i]`.
|
||
|
||
DOCS: https://spacy.io/api/token#nbor
|
||
"""
|
||
if self.i+i < 0 or (self.i+i >= len(self.doc)):
|
||
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
|
||
return self.doc[self.i+i]
|
||
|
||
def similarity(self, other):
|
||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
other (object): The object to compare with. By default, accepts `Doc`,
|
||
`Span`, `Token` and `Lexeme` objects.
|
||
RETURNS (float): A scalar similarity score. Higher is more similar.
|
||
|
||
DOCS: https://spacy.io/api/token#similarity
|
||
"""
|
||
if "similarity" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["similarity"](self, other)
|
||
if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"):
|
||
if self.c.lex.orth == getattr(other[0], "orth", None):
|
||
return 1.0
|
||
elif hasattr(other, "orth"):
|
||
if self.c.lex.orth == other.orth:
|
||
return 1.0
|
||
if self.vocab.vectors.n_keys == 0:
|
||
warnings.warn(Warnings.W007.format(obj="Token"))
|
||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||
warnings.warn(Warnings.W008.format(obj="Token"))
|
||
return 0.0
|
||
vector = self.vector
|
||
xp = get_array_module(vector)
|
||
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
|
||
|
||
@property
|
||
def morph(self):
|
||
return MorphAnalysis.from_id(self.vocab, self.c.morph)
|
||
|
||
property morph_:
|
||
def __get__(self):
|
||
return str(MorphAnalysis.from_id(self.vocab, self.c.morph))
|
||
|
||
def __set__(self, features):
|
||
cdef hash_t key = self.vocab.morphology.add(features)
|
||
self.c.morph = key
|
||
|
||
@property
|
||
def lex_id(self):
|
||
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
||
return self.c.lex.id
|
||
|
||
@property
|
||
def rank(self):
|
||
"""RETURNS (int): Sequential ID of the token's lexical type, used to
|
||
index into tables, e.g. for word vectors."""
|
||
return self.c.lex.id
|
||
|
||
@property
|
||
def string(self):
|
||
"""Deprecated: Use Token.text_with_ws instead."""
|
||
return self.text_with_ws
|
||
|
||
@property
|
||
def text(self):
|
||
"""RETURNS (str): The original verbatim text of the token."""
|
||
return self.orth_
|
||
|
||
@property
|
||
def text_with_ws(self):
|
||
"""RETURNS (str): The text content of the span (with trailing
|
||
whitespace).
|
||
"""
|
||
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
|
||
if self.c.spacy:
|
||
return orth + " "
|
||
else:
|
||
return orth
|
||
|
||
@property
|
||
def prob(self):
|
||
"""RETURNS (float): Smoothed log probability estimate of token type."""
|
||
return self.vocab[self.c.lex.orth].prob
|
||
|
||
@property
|
||
def sentiment(self):
|
||
"""RETURNS (float): A scalar value indicating the positivity or
|
||
negativity of the token."""
|
||
if "sentiment" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["sentiment"](self)
|
||
return self.vocab[self.c.lex.orth].sentiment
|
||
|
||
@property
|
||
def lang(self):
|
||
"""RETURNS (uint64): ID of the language of the parent document's
|
||
vocabulary.
|
||
"""
|
||
return self.c.lex.lang
|
||
|
||
@property
|
||
def idx(self):
|
||
"""RETURNS (int): The character offset of the token within the parent
|
||
document.
|
||
"""
|
||
return self.c.idx
|
||
|
||
@property
|
||
def cluster(self):
|
||
"""RETURNS (int): Brown cluster ID."""
|
||
return self.vocab[self.c.lex.orth].cluster
|
||
|
||
@property
|
||
def orth(self):
|
||
"""RETURNS (uint64): ID of the verbatim text content."""
|
||
return self.c.lex.orth
|
||
|
||
@property
|
||
def lower(self):
|
||
"""RETURNS (uint64): ID of the lowercase token text."""
|
||
return self.c.lex.lower
|
||
|
||
@property
|
||
def norm(self):
|
||
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
|
||
the token text. Usually set in the language's tokenizer exceptions
|
||
or norm exceptions.
|
||
"""
|
||
if self.c.norm == 0:
|
||
return self.c.lex.norm
|
||
else:
|
||
return self.c.norm
|
||
|
||
@property
|
||
def shape(self):
|
||
"""RETURNS (uint64): ID of the token's shape, a transform of the
|
||
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
|
||
"""
|
||
return self.c.lex.shape
|
||
|
||
@property
|
||
def prefix(self):
|
||
"""RETURNS (uint64): ID of a length-N substring from the start of the
|
||
token. Defaults to `N=1`.
|
||
"""
|
||
return self.c.lex.prefix
|
||
|
||
@property
|
||
def suffix(self):
|
||
"""RETURNS (uint64): ID of a length-N substring from the end of the
|
||
token. Defaults to `N=3`.
|
||
"""
|
||
return self.c.lex.suffix
|
||
|
||
property lemma:
|
||
"""RETURNS (uint64): ID of the base form of the word, with no
|
||
inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
if self.c.lemma == 0:
|
||
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
|
||
return self.vocab.strings[lemma_]
|
||
else:
|
||
return self.c.lemma
|
||
|
||
def __set__(self, attr_t lemma):
|
||
self.c.lemma = lemma
|
||
|
||
property pos:
|
||
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.pos
|
||
|
||
def __set__(self, pos):
|
||
self.c.pos = pos
|
||
|
||
property tag:
|
||
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.tag
|
||
|
||
def __set__(self, attr_t tag):
|
||
self.vocab.morphology.assign_tag(self.c, tag)
|
||
|
||
property dep:
|
||
"""RETURNS (uint64): ID of syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.c.dep
|
||
|
||
def __set__(self, attr_t label):
|
||
self.c.dep = label
|
||
|
||
@property
|
||
def has_vector(self):
|
||
"""A boolean value indicating whether a word vector is associated with
|
||
the object.
|
||
|
||
RETURNS (bool): Whether a word vector is associated with the object.
|
||
|
||
DOCS: https://spacy.io/api/token#has_vector
|
||
"""
|
||
if "has_vector" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["has_vector"](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return True
|
||
return self.vocab.has_vector(self.c.lex.orth)
|
||
|
||
@property
|
||
def vector(self):
|
||
"""A real-valued meaning representation.
|
||
|
||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||
representing the token's semantics.
|
||
|
||
DOCS: https://spacy.io/api/token#vector
|
||
"""
|
||
if "vector" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["vector"](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return self.doc.tensor[self.i]
|
||
else:
|
||
return self.vocab.get_vector(self.c.lex.orth)
|
||
|
||
@property
|
||
def vector_norm(self):
|
||
"""The L2 norm of the token's vector representation.
|
||
|
||
RETURNS (float): The L2 norm of the vector representation.
|
||
|
||
DOCS: https://spacy.io/api/token#vector_norm
|
||
"""
|
||
if "vector_norm" in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["vector_norm"](self)
|
||
vector = self.vector
|
||
xp = get_array_module(vector)
|
||
total = (vector ** 2).sum()
|
||
return xp.sqrt(total) if total != 0. else 0.
|
||
|
||
@property
|
||
def tensor(self):
|
||
if self.doc.tensor is None:
|
||
return None
|
||
return self.doc.tensor[self.i]
|
||
|
||
@property
|
||
def n_lefts(self):
|
||
"""The number of leftward immediate children of the word, in the
|
||
syntactic dependency parse.
|
||
|
||
RETURNS (int): The number of leftward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
|
||
DOCS: https://spacy.io/api/token#n_lefts
|
||
"""
|
||
return self.c.l_kids
|
||
|
||
@property
|
||
def n_rights(self):
|
||
"""The number of rightward immediate children of the word, in the
|
||
syntactic dependency parse.
|
||
|
||
RETURNS (int): The number of rightward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
|
||
DOCS: https://spacy.io/api/token#n_rights
|
||
"""
|
||
return self.c.r_kids
|
||
|
||
@property
|
||
def sent(self):
|
||
"""RETURNS (Span): The sentence span that the token is a part of."""
|
||
if 'sent' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks["sent"](self)
|
||
return self.doc[self.i : self.i+1].sent
|
||
|
||
property sent_start:
|
||
def __get__(self):
|
||
"""Deprecated: use Token.is_sent_start instead."""
|
||
# Raising a deprecation warning here causes errors for autocomplete
|
||
# Handle broken backwards compatibility case: doc[0].sent_start
|
||
# was False.
|
||
if self.i == 0:
|
||
return False
|
||
else:
|
||
return self.c.sent_start
|
||
|
||
def __set__(self, value):
|
||
self.is_sent_start = value
|
||
|
||
property is_sent_start:
|
||
"""A boolean value indicating whether the token starts a sentence.
|
||
`None` if unknown. Defaults to `True` for the first token in the `Doc`.
|
||
|
||
RETURNS (bool / None): Whether the token starts a sentence.
|
||
None if unknown.
|
||
|
||
DOCS: https://spacy.io/api/token#is_sent_start
|
||
"""
|
||
def __get__(self):
|
||
if self.c.sent_start == 0:
|
||
return None
|
||
elif self.c.sent_start < 0:
|
||
return False
|
||
else:
|
||
return True
|
||
|
||
def __set__(self, value):
|
||
if self.doc.is_parsed:
|
||
raise ValueError(Errors.E043)
|
||
if value is None:
|
||
self.c.sent_start = 0
|
||
elif value is True:
|
||
self.c.sent_start = 1
|
||
elif value is False:
|
||
self.c.sent_start = -1
|
||
else:
|
||
raise ValueError(Errors.E044.format(value=value))
|
||
|
||
property is_sent_end:
|
||
"""A boolean value indicating whether the token ends a sentence.
|
||
`None` if unknown. Defaults to `True` for the last token in the `Doc`.
|
||
|
||
RETURNS (bool / None): Whether the token ends a sentence.
|
||
None if unknown.
|
||
|
||
DOCS: https://spacy.io/api/token#is_sent_end
|
||
"""
|
||
def __get__(self):
|
||
if self.i + 1 == len(self.doc):
|
||
return True
|
||
elif self.doc[self.i+1].is_sent_start == None:
|
||
return None
|
||
elif self.doc[self.i+1].is_sent_start == True:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def __set__(self, value):
|
||
raise ValueError(Errors.E196)
|
||
|
||
@property
|
||
def lefts(self):
|
||
"""The leftward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A left-child of the token.
|
||
|
||
DOCS: https://spacy.io/api/token#lefts
|
||
"""
|
||
cdef int nr_iter = 0
|
||
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
||
while ptr < self.c:
|
||
if ptr + ptr.head == self.c:
|
||
yield self.doc[ptr - (self.c - self.i)]
|
||
ptr += 1
|
||
nr_iter += 1
|
||
# This is ugly, but it's a way to guard out infinite loops
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
|
||
|
||
@property
|
||
def rights(self):
|
||
"""The rightward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A right-child of the token.
|
||
|
||
DOCS: https://spacy.io/api/token#rights
|
||
"""
|
||
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
||
tokens = []
|
||
cdef int nr_iter = 0
|
||
while ptr > self.c:
|
||
if ptr + ptr.head == self.c:
|
||
tokens.append(self.doc[ptr - (self.c - self.i)])
|
||
ptr -= 1
|
||
nr_iter += 1
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr="token.rights"))
|
||
tokens.reverse()
|
||
for t in tokens:
|
||
yield t
|
||
|
||
@property
|
||
def children(self):
|
||
"""A sequence of the token's immediate syntactic children.
|
||
|
||
YIELDS (Token): A child token such that `child.head==self`.
|
||
|
||
DOCS: https://spacy.io/api/token#children
|
||
"""
|
||
yield from self.lefts
|
||
yield from self.rights
|
||
|
||
@property
|
||
def subtree(self):
|
||
"""A sequence containing the token and all the token's syntactic
|
||
descendants.
|
||
|
||
YIELDS (Token): A descendent token such that
|
||
`self.is_ancestor(descendent) or token == self`.
|
||
|
||
DOCS: https://spacy.io/api/token#subtree
|
||
"""
|
||
for word in self.lefts:
|
||
yield from word.subtree
|
||
yield self
|
||
for word in self.rights:
|
||
yield from word.subtree
|
||
|
||
@property
|
||
def left_edge(self):
|
||
"""The leftmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
|
||
"""
|
||
return self.doc[self.c.l_edge]
|
||
|
||
@property
|
||
def right_edge(self):
|
||
"""The rightmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
|
||
"""
|
||
return self.doc[self.c.r_edge]
|
||
|
||
@property
|
||
def ancestors(self):
|
||
"""A sequence of this token's syntactic ancestors.
|
||
|
||
YIELDS (Token): A sequence of ancestor tokens such that
|
||
`ancestor.is_ancestor(self)`.
|
||
|
||
DOCS: https://spacy.io/api/token#ancestors
|
||
"""
|
||
cdef const TokenC* head_ptr = self.c
|
||
# Guard against infinite loop, no token can have
|
||
# more ancestors than tokens in the tree.
|
||
cdef int i = 0
|
||
while head_ptr.head != 0 and i < self.doc.length:
|
||
head_ptr += head_ptr.head
|
||
yield self.doc[head_ptr - (self.c - self.i)]
|
||
i += 1
|
||
|
||
def is_ancestor(self, descendant):
|
||
"""Check whether this token is a parent, grandparent, etc. of another
|
||
in the dependency tree.
|
||
|
||
descendant (Token): Another token.
|
||
RETURNS (bool): Whether this token is the ancestor of the descendant.
|
||
|
||
DOCS: https://spacy.io/api/token#is_ancestor
|
||
"""
|
||
if self.doc is not descendant.doc:
|
||
return False
|
||
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
|
||
|
||
property head:
|
||
"""The syntactic parent, or "governor", of this token.
|
||
|
||
RETURNS (Token): The token predicted by the parser to be the head of
|
||
the current token.
|
||
"""
|
||
def __get__(self):
|
||
return self.doc[self.i + self.c.head]
|
||
|
||
def __set__(self, Token new_head):
|
||
# This function sets the head of self to new_head and updates the
|
||
# counters for left/right dependents and left/right corner for the
|
||
# new and the old head
|
||
# Check that token is from the same document
|
||
if self.doc != new_head.doc:
|
||
raise ValueError(Errors.E191)
|
||
# Do nothing if old head is new head
|
||
if self.i + self.c.head == new_head.i:
|
||
return
|
||
cdef Token old_head = self.head
|
||
cdef int rel_newhead_i = new_head.i - self.i
|
||
# Is the new head a descendant of the old head
|
||
cdef bint is_desc = old_head.is_ancestor(new_head)
|
||
cdef int new_edge
|
||
cdef Token anc, child
|
||
# Update number of deps of old head
|
||
if self.c.head > 0: # left dependent
|
||
old_head.c.l_kids -= 1
|
||
if self.c.l_edge == old_head.c.l_edge:
|
||
# The token dominates the left edge so the left edge of
|
||
# the head may change when the token is reattached, it may
|
||
# not change if the new head is a descendant of the current
|
||
# head.
|
||
new_edge = self.c.l_edge
|
||
# The new l_edge is the left-most l_edge on any of the
|
||
# other dependents where the l_edge is left of the head,
|
||
# otherwise it is the head
|
||
if not is_desc:
|
||
new_edge = old_head.i
|
||
for child in old_head.children:
|
||
if child == self:
|
||
continue
|
||
if child.c.l_edge < new_edge:
|
||
new_edge = child.c.l_edge
|
||
old_head.c.l_edge = new_edge
|
||
# Walk up the tree from old_head and assign new l_edge to
|
||
# ancestors until an ancestor already has an l_edge that's
|
||
# further left
|
||
for anc in old_head.ancestors:
|
||
if anc.c.l_edge <= new_edge:
|
||
break
|
||
anc.c.l_edge = new_edge
|
||
elif self.c.head < 0: # right dependent
|
||
old_head.c.r_kids -= 1
|
||
# Do the same thing as for l_edge
|
||
if self.c.r_edge == old_head.c.r_edge:
|
||
new_edge = self.c.r_edge
|
||
if not is_desc:
|
||
new_edge = old_head.i
|
||
for child in old_head.children:
|
||
if child == self:
|
||
continue
|
||
if child.c.r_edge > new_edge:
|
||
new_edge = child.c.r_edge
|
||
old_head.c.r_edge = new_edge
|
||
for anc in old_head.ancestors:
|
||
if anc.c.r_edge >= new_edge:
|
||
break
|
||
anc.c.r_edge = new_edge
|
||
# Update number of deps of new head
|
||
if rel_newhead_i > 0: # left dependent
|
||
new_head.c.l_kids += 1
|
||
# Walk up the tree from new head and set l_edge to self.l_edge
|
||
# until you hit a token with an l_edge further to the left
|
||
if self.c.l_edge < new_head.c.l_edge:
|
||
new_head.c.l_edge = self.c.l_edge
|
||
for anc in new_head.ancestors:
|
||
if anc.c.l_edge <= self.c.l_edge:
|
||
break
|
||
anc.c.l_edge = self.c.l_edge
|
||
elif rel_newhead_i < 0: # right dependent
|
||
new_head.c.r_kids += 1
|
||
# Do the same as for l_edge
|
||
if self.c.r_edge > new_head.c.r_edge:
|
||
new_head.c.r_edge = self.c.r_edge
|
||
for anc in new_head.ancestors:
|
||
if anc.c.r_edge >= self.c.r_edge:
|
||
break
|
||
anc.c.r_edge = self.c.r_edge
|
||
# Set new head
|
||
self.c.head = rel_newhead_i
|
||
|
||
@property
|
||
def conjuncts(self):
|
||
"""A sequence of coordinated tokens, including the token itself.
|
||
|
||
RETURNS (tuple): The coordinated tokens.
|
||
|
||
DOCS: https://spacy.io/api/token#conjuncts
|
||
"""
|
||
cdef Token word, child
|
||
if "conjuncts" in self.doc.user_token_hooks:
|
||
return tuple(self.doc.user_token_hooks["conjuncts"](self))
|
||
start = self
|
||
while start.i != start.head.i:
|
||
if start.dep == conj:
|
||
start = start.head
|
||
else:
|
||
break
|
||
queue = [start]
|
||
output = [start]
|
||
for word in queue:
|
||
for child in word.rights:
|
||
if child.c.dep == conj:
|
||
output.append(child)
|
||
queue.append(child)
|
||
return tuple([w for w in output if w.i != self.i])
|
||
|
||
property ent_type:
|
||
"""RETURNS (uint64): Named entity type."""
|
||
def __get__(self):
|
||
return self.c.ent_type
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = ent_type
|
||
|
||
property ent_type_:
|
||
"""RETURNS (str): Named entity type."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_type]
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = self.vocab.strings.add(ent_type)
|
||
|
||
@property
|
||
def ent_iob(self):
|
||
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
||
is assigned.
|
||
|
||
RETURNS (uint64): IOB code of named entity tag.
|
||
"""
|
||
return self.c.ent_iob
|
||
|
||
@classmethod
|
||
def iob_strings(cls):
|
||
return ("", "I", "O", "B")
|
||
|
||
@property
|
||
def ent_iob_(self):
|
||
"""IOB code of named entity tag. "B" means the token begins an entity,
|
||
"I" means it is inside an entity, "O" means it is outside an entity,
|
||
and "" means no entity tag is set. "B" with an empty ent_type
|
||
means that the token is blocked from further processing by NER.
|
||
|
||
RETURNS (str): IOB code of named entity tag.
|
||
"""
|
||
return self.iob_strings()[self.c.ent_iob]
|
||
|
||
property ent_id:
|
||
"""RETURNS (uint64): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.ent_id
|
||
|
||
def __set__(self, hash_t key):
|
||
self.c.ent_id = key
|
||
|
||
property ent_id_:
|
||
"""RETURNS (str): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_id]
|
||
|
||
def __set__(self, name):
|
||
self.c.ent_id = self.vocab.strings.add(name)
|
||
|
||
property ent_kb_id:
|
||
"""RETURNS (uint64): Named entity KB ID."""
|
||
def __get__(self):
|
||
return self.c.ent_kb_id
|
||
|
||
def __set__(self, attr_t ent_kb_id):
|
||
self.c.ent_kb_id = ent_kb_id
|
||
|
||
property ent_kb_id_:
|
||
"""RETURNS (str): Named entity KB ID."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_kb_id]
|
||
|
||
def __set__(self, ent_kb_id):
|
||
self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
|
||
|
||
@property
|
||
def whitespace_(self):
|
||
"""RETURNS (str): The trailing whitespace character, if present."""
|
||
return " " if self.c.spacy else ""
|
||
|
||
@property
|
||
def orth_(self):
|
||
"""RETURNS (str): Verbatim text content (identical to
|
||
`Token.text`). Exists mostly for consistency with the other
|
||
attributes.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.orth]
|
||
|
||
@property
|
||
def lower_(self):
|
||
"""RETURNS (str): The lowercase token text. Equivalent to
|
||
`Token.text.lower()`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.lower]
|
||
|
||
property norm_:
|
||
"""RETURNS (str): The token's norm, i.e. a normalised form of the
|
||
token text. Usually set in the language's tokenizer exceptions or
|
||
norm exceptions.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.norm]
|
||
|
||
def __set__(self, unicode norm_):
|
||
self.c.norm = self.vocab.strings.add(norm_)
|
||
|
||
@property
|
||
def shape_(self):
|
||
"""RETURNS (str): Transform of the tokens's string, to show
|
||
orthographic features. For example, "Xxxx" or "dd".
|
||
"""
|
||
return self.vocab.strings[self.c.lex.shape]
|
||
|
||
@property
|
||
def prefix_(self):
|
||
"""RETURNS (str): A length-N substring from the start of the token.
|
||
Defaults to `N=1`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.prefix]
|
||
|
||
@property
|
||
def suffix_(self):
|
||
"""RETURNS (str): A length-N substring from the end of the token.
|
||
Defaults to `N=3`.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.suffix]
|
||
|
||
@property
|
||
def lang_(self):
|
||
"""RETURNS (str): Language of the parent document's vocabulary,
|
||
e.g. 'en'.
|
||
"""
|
||
return self.vocab.strings[self.c.lex.lang]
|
||
|
||
property lemma_:
|
||
"""RETURNS (str): The token lemma, i.e. the base form of the word,
|
||
with no inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
if self.c.lemma == 0:
|
||
return self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
|
||
else:
|
||
return self.vocab.strings[self.c.lemma]
|
||
|
||
def __set__(self, unicode lemma_):
|
||
self.c.lemma = self.vocab.strings.add(lemma_)
|
||
|
||
property pos_:
|
||
"""RETURNS (str): Coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return parts_of_speech.NAMES[self.c.pos]
|
||
|
||
def __set__(self, pos_name):
|
||
self.c.pos = parts_of_speech.IDS[pos_name]
|
||
|
||
property tag_:
|
||
"""RETURNS (str): Fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.tag]
|
||
|
||
def __set__(self, tag):
|
||
self.tag = self.vocab.strings.add(tag)
|
||
|
||
property dep_:
|
||
"""RETURNS (str): The syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.dep]
|
||
|
||
def __set__(self, unicode label):
|
||
self.c.dep = self.vocab.strings.add(label)
|
||
|
||
@property
|
||
def is_oov(self):
|
||
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
||
return self.c.lex.orth in self.vocab.vectors
|
||
|
||
@property
|
||
def is_stop(self):
|
||
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
|
||
"stop list" defined by the language data.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
||
|
||
@property
|
||
def is_alpha(self):
|
||
"""RETURNS (bool): Whether the token consists of alpha characters.
|
||
Equivalent to `token.text.isalpha()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
||
|
||
@property
|
||
def is_ascii(self):
|
||
"""RETURNS (bool): Whether the token consists of ASCII characters.
|
||
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
||
|
||
@property
|
||
def is_digit(self):
|
||
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
|
||
`token.text.isdigit()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
||
|
||
@property
|
||
def is_lower(self):
|
||
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
|
||
`token.text.islower()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
||
|
||
@property
|
||
def is_upper(self):
|
||
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
|
||
`token.text.isupper()`
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
||
|
||
@property
|
||
def is_title(self):
|
||
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
|
||
`token.text.istitle()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
||
|
||
@property
|
||
def is_punct(self):
|
||
"""RETURNS (bool): Whether the token is punctuation."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
||
|
||
@property
|
||
def is_space(self):
|
||
"""RETURNS (bool): Whether the token consists of whitespace characters.
|
||
Equivalent to `token.text.isspace()`.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
||
|
||
@property
|
||
def is_bracket(self):
|
||
"""RETURNS (bool): Whether the token is a bracket."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
||
|
||
@property
|
||
def is_quote(self):
|
||
"""RETURNS (bool): Whether the token is a quotation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
||
|
||
@property
|
||
def is_left_punct(self):
|
||
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
||
|
||
@property
|
||
def is_right_punct(self):
|
||
"""RETURNS (bool): Whether the token is a right punctuation mark."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
||
|
||
@property
|
||
def is_currency(self):
|
||
"""RETURNS (bool): Whether the token is a currency symbol."""
|
||
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
||
|
||
@property
|
||
def like_url(self):
|
||
"""RETURNS (bool): Whether the token resembles a URL."""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
||
|
||
@property
|
||
def like_num(self):
|
||
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
|
||
"10", "ten", etc.
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
||
|
||
@property
|
||
def like_email(self):
|
||
"""RETURNS (bool): Whether the token resembles an email address."""
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|