mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
43b960c01b
* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
147 lines
4.2 KiB
Python
147 lines
4.2 KiB
Python
import warnings
|
|
from unittest import TestCase
|
|
import pytest
|
|
import srsly
|
|
from numpy import zeros
|
|
from spacy.kb import KnowledgeBase, Writer
|
|
from spacy.vectors import Vectors
|
|
from spacy.language import Language
|
|
from spacy.pipeline import Pipe
|
|
from spacy.util import registry
|
|
|
|
from ..util import make_tempdir
|
|
|
|
|
|
def nlp():
|
|
return Language()
|
|
|
|
|
|
def vectors():
|
|
data = zeros((3, 1), dtype="f")
|
|
keys = ["cat", "dog", "rat"]
|
|
return Vectors(data=data, keys=keys)
|
|
|
|
|
|
def custom_pipe():
|
|
# create dummy pipe partially implementing interface -- only want to test to_disk
|
|
class SerializableDummy:
|
|
def __init__(self, **cfg):
|
|
if cfg:
|
|
self.cfg = cfg
|
|
else:
|
|
self.cfg = None
|
|
super(SerializableDummy, self).__init__()
|
|
|
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
|
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
|
|
|
|
def from_bytes(self, bytes_data, exclude):
|
|
return self
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
pass
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
return self
|
|
|
|
class MyPipe(Pipe):
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
if cfg:
|
|
self.cfg = cfg
|
|
else:
|
|
self.cfg = None
|
|
self.model = SerializableDummy()
|
|
self.vocab = SerializableDummy()
|
|
|
|
return MyPipe(None)
|
|
|
|
|
|
def tagger():
|
|
nlp = Language()
|
|
tagger = nlp.add_pipe("tagger")
|
|
# need to add model for two reasons:
|
|
# 1. no model leads to error in serialization,
|
|
# 2. the affected line is the one for model serialization
|
|
with pytest.warns(UserWarning):
|
|
tagger.begin_training(pipeline=nlp.pipeline)
|
|
return tagger
|
|
|
|
|
|
def entity_linker():
|
|
nlp = Language()
|
|
|
|
@registry.assets.register("TestIssue5230KB.v1")
|
|
def dummy_kb() -> KnowledgeBase:
|
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
|
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
|
|
return kb
|
|
|
|
config = {"kb": {"@assets": "TestIssue5230KB.v1"}}
|
|
entity_linker = nlp.add_pipe("entity_linker", config=config)
|
|
# need to add model for two reasons:
|
|
# 1. no model leads to error in serialization,
|
|
# 2. the affected line is the one for model serialization
|
|
entity_linker.begin_training(pipeline=nlp.pipeline)
|
|
return entity_linker
|
|
|
|
|
|
objects_to_test = (
|
|
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
|
|
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
|
)
|
|
|
|
|
|
def write_obj_and_catch_warnings(obj):
|
|
with make_tempdir() as d:
|
|
with warnings.catch_warnings(record=True) as warnings_list:
|
|
warnings.filterwarnings("always", category=ResourceWarning)
|
|
obj.to_disk(d)
|
|
# in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
|
|
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
|
|
|
|
|
|
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
|
|
def test_to_disk_resource_warning(obj):
|
|
warnings_list = write_obj_and_catch_warnings(obj)
|
|
assert len(warnings_list) == 0
|
|
|
|
|
|
def test_writer_with_path_py35():
|
|
writer = None
|
|
with make_tempdir() as d:
|
|
path = d / "test"
|
|
try:
|
|
writer = Writer(path)
|
|
except Exception as e:
|
|
pytest.fail(str(e))
|
|
finally:
|
|
if writer:
|
|
writer.close()
|
|
|
|
|
|
def test_save_and_load_knowledge_base():
|
|
nlp = Language()
|
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
|
with make_tempdir() as d:
|
|
path = d / "kb"
|
|
try:
|
|
kb.dump(path)
|
|
except Exception as e:
|
|
pytest.fail(str(e))
|
|
|
|
try:
|
|
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
|
kb_loaded.load_bulk(path)
|
|
except Exception as e:
|
|
pytest.fail(str(e))
|
|
|
|
|
|
class TestToDiskResourceWarningUnittest(TestCase):
|
|
def test_resource_warning(self):
|
|
scenarios = zip(*objects_to_test)
|
|
|
|
for scenario in scenarios:
|
|
with self.subTest(msg=scenario[1]):
|
|
warnings_list = write_obj_and_catch_warnings(scenario[0])
|
|
self.assertEqual(len(warnings_list), 0)
|