mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List
 | 
						|
from thinc.api import Model, Linear, with_array, softmax_activation, padded2list
 | 
						|
from thinc.api import chain, list2padded, configure_normal_init
 | 
						|
from thinc.api import Dropout
 | 
						|
from thinc.types import Floats2d
 | 
						|
 | 
						|
from ...tokens import Doc
 | 
						|
from .._biluo import BILUO
 | 
						|
from .._iob import IOB
 | 
						|
from ...util import registry
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.BILUOTagger.v1")
 | 
						|
def BiluoTagger(
 | 
						|
    tok2vec: Model[List[Doc], List[Floats2d]]
 | 
						|
) -> Model[List[Doc], List[Floats2d]]:
 | 
						|
    """Construct a simple NER tagger, that predicts BILUO tag scores for each
 | 
						|
    token and uses greedy decoding with transition-constraints to return a valid
 | 
						|
    BILUO tag sequence.
 | 
						|
 | 
						|
    A BILUO tag sequence encodes a sequence of non-overlapping labelled spans
 | 
						|
    into tags assigned to each token. The first token of a span is given the
 | 
						|
    tag B-LABEL, the last token of the span is given the tag L-LABEL, and tokens
 | 
						|
    within the span are given the tag U-LABEL. Single-token spans are given
 | 
						|
    the tag U-LABEL. All other tokens are assigned the tag O.
 | 
						|
 | 
						|
    The BILUO tag scheme generally results in better linear separation between
 | 
						|
    classes, especially for non-CRF models, because there are more distinct classes
 | 
						|
    for the different situations (Ratinov et al., 2009).
 | 
						|
    """
 | 
						|
    biluo = BILUO()
 | 
						|
    linear = Linear(
 | 
						|
        nO=None, nI=tok2vec.get_dim("nO"), init_W=configure_normal_init(mean=0.02)
 | 
						|
    )
 | 
						|
    model = chain(
 | 
						|
        tok2vec,
 | 
						|
        list2padded(),
 | 
						|
        with_array(chain(Dropout(0.1), linear)),
 | 
						|
        biluo,
 | 
						|
        with_array(softmax_activation()),
 | 
						|
        padded2list(),
 | 
						|
    )
 | 
						|
    return Model(
 | 
						|
        "biluo-tagger",
 | 
						|
        forward,
 | 
						|
        init=init,
 | 
						|
        layers=[model, linear],
 | 
						|
        refs={"tok2vec": tok2vec, "linear": linear, "biluo": biluo},
 | 
						|
        dims={"nO": None},
 | 
						|
        attrs={"get_num_actions": biluo.attrs["get_num_actions"]},
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.IOBTagger.v1")
 | 
						|
def IOBTagger(
 | 
						|
    tok2vec: Model[List[Doc], List[Floats2d]]
 | 
						|
) -> Model[List[Doc], List[Floats2d]]:
 | 
						|
    """Construct a simple NER tagger, that predicts IOB tag scores for each
 | 
						|
    token and uses greedy decoding with transition-constraints to return a valid
 | 
						|
    IOB tag sequence.
 | 
						|
 | 
						|
    An IOB tag sequence encodes a sequence of non-overlapping labelled spans
 | 
						|
    into tags assigned to each token. The first token of a span is given the
 | 
						|
    tag B-LABEL, and subsequent tokens are given the tag I-LABEL.
 | 
						|
    All other tokens are assigned the tag O.
 | 
						|
    """
 | 
						|
    biluo = IOB()
 | 
						|
    linear = Linear(nO=None, nI=tok2vec.get_dim("nO"))
 | 
						|
    model = chain(
 | 
						|
        tok2vec,
 | 
						|
        list2padded(),
 | 
						|
        with_array(linear),
 | 
						|
        biluo,
 | 
						|
        with_array(softmax_activation()),
 | 
						|
        padded2list(),
 | 
						|
    )
 | 
						|
    return Model(
 | 
						|
        "iob-tagger",
 | 
						|
        forward,
 | 
						|
        init=init,
 | 
						|
        layers=[model],
 | 
						|
        refs={"tok2vec": tok2vec, "linear": linear, "biluo": biluo},
 | 
						|
        dims={"nO": None},
 | 
						|
        attrs={"get_num_actions": biluo.attrs["get_num_actions"]},
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def init(model: Model[List[Doc], List[Floats2d]], X=None, Y=None) -> None:
 | 
						|
    if model.get_dim("nO") is None and Y:
 | 
						|
        model.set_dim("nO", Y[0].shape[1])
 | 
						|
    nO = model.get_dim("nO")
 | 
						|
    biluo = model.get_ref("biluo")
 | 
						|
    linear = model.get_ref("linear")
 | 
						|
    biluo.set_dim("nO", nO)
 | 
						|
    if linear.has_dim("nO") is None:
 | 
						|
        linear.set_dim("nO", nO)
 | 
						|
    model.layers[0].initialize(X=X, Y=Y)
 | 
						|
 | 
						|
 | 
						|
def forward(model: Model, X: List[Doc], is_train: bool):
 | 
						|
    return model.layers[0](X, is_train)
 | 
						|
 | 
						|
 | 
						|
__all__ = ["BiluoTagger"]
 |