mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from ....tokens.doc import Doc
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def en_lemmatizer(EN):
 | 
						|
    return EN.Defaults.create_lemmatizer()
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_doc_lemmatization(EN):
 | 
						|
    doc = Doc(EN.vocab, words=['bleed'])
 | 
						|
    doc[0].tag_ = 'VBP'
 | 
						|
    assert doc[0].lemma_ == 'bleed'
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
@pytest.mark.parametrize('text,lemmas', [("aardwolves", ["aardwolf"]),
 | 
						|
                                         ("aardwolf", ["aardwolf"]),
 | 
						|
                                         ("planets", ["planet"]),
 | 
						|
                                         ("ring", ["ring"]),
 | 
						|
                                         ("axes", ["axis", "axe", "ax"])])
 | 
						|
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
 | 
						|
    assert en_lemmatizer.noun(text) == lemmas
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
@pytest.mark.parametrize('text,lemmas', [("bleed", ["bleed"]),
 | 
						|
                                         ("feed", ["feed"]),
 | 
						|
                                         ("need", ["need"]),
 | 
						|
                                         ("ring", ["ring"])])
 | 
						|
def test_en_lemmatizer_noun_lemmas(en_lemmatizer, text, lemmas):
 | 
						|
    # Cases like this are problematic -- not clear what we should do to resolve
 | 
						|
    # ambiguity?
 | 
						|
    # ("axes", ["ax", "axes", "axis"])])
 | 
						|
    assert en_lemmatizer.noun(text) == lemmas
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_base_forms(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.noun('dive', {'number': 'sing'}) == ['dive']
 | 
						|
    assert en_lemmatizer.noun('dive', {'number': 'plur'}) == ['diva']
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_base_form_verb(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.verb('saw', {'verbform': 'past'}) == ['see']
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_punct(en_lemmatizer):
 | 
						|
    assert en_lemmatizer.punct('“') == ['"']
 | 
						|
    assert en_lemmatizer.punct('“') == ['"']
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models('en')
 | 
						|
def test_en_lemmatizer_lemma_assignment(EN):
 | 
						|
    text = "Bananas in pyjamas are geese."
 | 
						|
    doc = EN.make_doc(text)
 | 
						|
    EN.tagger(doc)
 | 
						|
    assert all(t.lemma_ != '' for t in doc)
 |