mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Tagger: use unnormalized probabilities for inference Using unnormalized softmax avoids use of the relatively expensive exp function, which can significantly speed up non-transformer models (e.g. I got a speedup of 27% on a German tagging + parsing pipeline). * Add spacy.Tagger.v2 with configurable normalization Normalization of probabilities is disabled by default to improve performance. * Update documentation, models, and tests to spacy.Tagger.v2 * Move Tagger.v1 to spacy-legacy * docs/architectures: run prettier * Unnormalized softmax is now a Softmax_v2 option * Require thinc 8.0.14 and spacy-legacy 3.0.9
		
			
				
	
	
		
			189 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True, binding=True
 | |
| from typing import Optional, Callable
 | |
| from itertools import islice
 | |
| 
 | |
| import srsly
 | |
| from thinc.api import Model, SequenceCategoricalCrossentropy, Config
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| 
 | |
| from .tagger import Tagger
 | |
| from ..language import Language
 | |
| from ..errors import Errors
 | |
| from ..scorer import Scorer
 | |
| from ..training import validate_examples, validate_get_examples
 | |
| from ..util import registry
 | |
| from .. import util
 | |
| 
 | |
| # See #9050
 | |
| BACKWARD_OVERWRITE = False
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v2"
 | |
| pretrained_vectors = null
 | |
| width = 12
 | |
| depth = 1
 | |
| embed_size = 2000
 | |
| window_size = 1
 | |
| maxout_pieces = 2
 | |
| subword_features = true
 | |
| """
 | |
| DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "senter",
 | |
|     assigns=["token.is_sent_start"],
 | |
|     default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
 | |
|     default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
 | |
| )
 | |
| def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
 | |
|     return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
 | |
| 
 | |
| 
 | |
| def senter_score(examples, **kwargs):
 | |
|     def has_sents(doc):
 | |
|         return doc.has_annotation("SENT_START")
 | |
| 
 | |
|     results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
 | |
|     del results["sents_per_type"]
 | |
|     return results
 | |
| 
 | |
| 
 | |
| @registry.scorers("spacy.senter_scorer.v1")
 | |
| def make_senter_scorer():
 | |
|     return senter_score
 | |
| 
 | |
| 
 | |
| class SentenceRecognizer(Tagger):
 | |
|     """Pipeline component for sentence segmentation.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/sentencerecognizer
 | |
|     """
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab,
 | |
|         model,
 | |
|         name="senter",
 | |
|         *,
 | |
|         overwrite=BACKWARD_OVERWRITE,
 | |
|         scorer=senter_score,
 | |
|     ):
 | |
|         """Initialize a sentence recognizer.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         scorer (Optional[Callable]): The scoring method. Defaults to
 | |
|             Scorer.score_spans for the attribute "sents".
 | |
| 
 | |
|         DOCS: https://spacy.io/api/sentencerecognizer#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self._rehearsal_model = None
 | |
|         self.cfg = {"overwrite": overwrite}
 | |
|         self.scorer = scorer
 | |
| 
 | |
|     @property
 | |
|     def labels(self):
 | |
|         """RETURNS (Tuple[str]): The labels."""
 | |
|         # labels are numbered by index internally, so this matches GoldParse
 | |
|         # and Example where the sentence-initial tag is 1 and other positions
 | |
|         # are 0
 | |
|         return tuple(["I", "S"])
 | |
| 
 | |
|     @property
 | |
|     def hide_labels(self):
 | |
|         return True
 | |
| 
 | |
|     @property
 | |
|     def label_data(self):
 | |
|         return None
 | |
| 
 | |
|     def set_annotations(self, docs, batch_tag_ids):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
 | |
|         """
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         cdef Doc doc
 | |
|         cdef bint overwrite = self.cfg["overwrite"]
 | |
|         for i, doc in enumerate(docs):
 | |
|             doc_tag_ids = batch_tag_ids[i]
 | |
|             if hasattr(doc_tag_ids, "get"):
 | |
|                 doc_tag_ids = doc_tag_ids.get()
 | |
|             for j, tag_id in enumerate(doc_tag_ids):
 | |
|                 if doc.c[j].sent_start == 0 or overwrite:
 | |
|                     if tag_id == 1:
 | |
|                         doc.c[j].sent_start = 1
 | |
|                     else:
 | |
|                         doc.c[j].sent_start = -1
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETURNS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/sentencerecognizer#get_loss
 | |
|         """
 | |
|         validate_examples(examples, "SentenceRecognizer.get_loss")
 | |
|         labels = self.labels
 | |
|         loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
 | |
|         truths = []
 | |
|         for eg in examples:
 | |
|             eg_truth = []
 | |
|             for x in eg.get_aligned("SENT_START"):
 | |
|                 if x is None:
 | |
|                     eg_truth.append(None)
 | |
|                 elif x == 1:
 | |
|                     eg_truth.append(labels[1])
 | |
|                 else:
 | |
|                     # anything other than 1: 0, -1, -1 as uint64
 | |
|                     eg_truth.append(labels[0])
 | |
|             truths.append(eg_truth)
 | |
|         d_scores, loss = loss_func(scores, truths)
 | |
|         if self.model.ops.xp.isnan(loss):
 | |
|             raise ValueError(Errors.E910.format(name=self.name))
 | |
|         return float(loss), d_scores
 | |
| 
 | |
|     def initialize(self, get_examples, *, nlp=None):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/sentencerecognizer#initialize
 | |
|         """
 | |
|         validate_get_examples(get_examples, "SentenceRecognizer.initialize")
 | |
|         util.check_lexeme_norms(self.vocab, "senter")
 | |
|         doc_sample = []
 | |
|         label_sample = []
 | |
|         assert self.labels, Errors.E924.format(name=self.name)
 | |
|         for example in islice(get_examples(), 10):
 | |
|             doc_sample.append(example.x)
 | |
|             gold_tags = example.get_aligned("SENT_START")
 | |
|             gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
 | |
|             label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(X=doc_sample, Y=label_sample)
 | |
| 
 | |
|     def add_label(self, label, values=None):
 | |
|         raise NotImplementedError
 |