mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Handle unset token.morph in Morphologizer Handle unset `token.morph` in `Morphologizer.initialize` and `Morphologizer.get_loss`. If both `token.morph` and `token.pos` are unset, treat the annotation as missing rather than empty. * Add token.has_morph()
		
			
				
	
	
		
			164 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from numpy.testing import assert_equal
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.training import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.morphology import Morphology
 | |
| from spacy.attrs import MORPH
 | |
| 
 | |
| 
 | |
| def test_label_types():
 | |
|     nlp = Language()
 | |
|     morphologizer = nlp.add_pipe("morphologizer")
 | |
|     morphologizer.add_label("Feat=A")
 | |
|     with pytest.raises(ValueError):
 | |
|         morphologizer.add_label(9)
 | |
| 
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "I like green eggs",
 | |
|         {
 | |
|             "morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
 | |
|             "pos": ["NOUN", "VERB", "ADJ", "NOUN"],
 | |
|         },
 | |
|     ),
 | |
|     # test combinations of morph+POS
 | |
|     ("Eat blue ham", {"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_no_label():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("morphologizer")
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| def test_implicit_label():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("morphologizer")
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
| 
 | |
| def test_no_resize():
 | |
|     nlp = Language()
 | |
|     morphologizer = nlp.add_pipe("morphologizer")
 | |
|     morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
 | |
|     morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB")
 | |
|     nlp.initialize()
 | |
|     # this throws an error because the morphologizer can't be resized after initialization
 | |
|     with pytest.raises(ValueError):
 | |
|         morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ")
 | |
| 
 | |
| 
 | |
| def test_initialize_examples():
 | |
|     nlp = Language()
 | |
|     morphologizer = nlp.add_pipe("morphologizer")
 | |
|     morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     # you shouldn't really call this more than once, but for testing it should be fine
 | |
|     nlp.initialize()
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=lambda: None)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=train_examples)
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("morphologizer")
 | |
|     train_examples = []
 | |
|     for inst in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["morphologizer"] < 0.00001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like blue ham"
 | |
|     doc = nlp(test_text)
 | |
|     gold_morphs = ["Feat=N", "Feat=V", "", ""]
 | |
|     gold_pos_tags = ["NOUN", "VERB", "ADJ", ""]
 | |
|     assert [str(t.morph) for t in doc] == gold_morphs
 | |
|     assert [t.pos_ for t in doc] == gold_pos_tags
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert [str(t.morph) for t in doc2] == gold_morphs
 | |
|         assert [t.pos_ for t in doc2] == gold_pos_tags
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = [
 | |
|         "Just a sentence.",
 | |
|         "Then one more sentence about London.",
 | |
|         "Here is another one.",
 | |
|         "I like London.",
 | |
|     ]
 | |
|     batch_deps_1 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.to_array([MORPH]) for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.to_array([MORPH]) for doc in [nlp(text) for text in texts]]
 | |
|     assert_equal(batch_deps_1, batch_deps_2)
 | |
|     assert_equal(batch_deps_1, no_batch_deps)
 | |
| 
 | |
|     # Test without POS
 | |
|     nlp.remove_pipe("morphologizer")
 | |
|     nlp.add_pipe("morphologizer")
 | |
|     for example in train_examples:
 | |
|         for token in example.reference:
 | |
|             token.pos_ = ""
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["morphologizer"] < 0.00001
 | |
| 
 | |
|     # Test the trained model
 | |
|     test_text = "I like blue ham"
 | |
|     doc = nlp(test_text)
 | |
|     gold_morphs = ["Feat=N", "Feat=V", "", ""]
 | |
|     gold_pos_tags = ["", "", "", ""]
 | |
|     assert [str(t.morph) for t in doc] == gold_morphs
 | |
|     assert [t.pos_ for t in doc] == gold_pos_tags
 | |
| 
 | |
|     # Test with unset morph and partial POS
 | |
|     nlp.remove_pipe("morphologizer")
 | |
|     nlp.add_pipe("morphologizer")
 | |
|     for example in train_examples:
 | |
|         for token in example.reference:
 | |
|             if token.text == "ham":
 | |
|                 token.pos_ = "NOUN"
 | |
|             else:
 | |
|                 token.pos_ = ""
 | |
|             token.set_morph(None)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     print(nlp.get_pipe("morphologizer").labels)
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["morphologizer"] < 0.00001
 | |
| 
 | |
|     # Test the trained model
 | |
|     test_text = "I like blue ham"
 | |
|     doc = nlp(test_text)
 | |
|     gold_morphs = ["", "", "", ""]
 | |
|     gold_pos_tags = ["NOUN", "NOUN", "NOUN", "NOUN"]
 | |
|     assert [str(t.morph) for t in doc] == gold_morphs
 | |
|     assert [t.pos_ for t in doc] == gold_pos_tags
 |