mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
  `SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
  returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
  the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
		
	
			
		
			
				
	
	
		
			147 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from numpy.testing import assert_equal
 | |
| from spacy.language import Language
 | |
| from spacy.training import Example
 | |
| from spacy.util import fix_random_seed, registry
 | |
| 
 | |
| 
 | |
| SPAN_KEY = "labeled_spans"
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def make_get_examples(nlp):
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA:
 | |
|         eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
 | |
|         train_examples.append(eg)
 | |
| 
 | |
|     def get_examples():
 | |
|         return train_examples
 | |
| 
 | |
|     return get_examples
 | |
| 
 | |
| 
 | |
| def test_simple_train():
 | |
|     fix_random_seed(0)
 | |
|     nlp = Language()
 | |
|     spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
 | |
|     get_examples = make_get_examples(nlp)
 | |
|     nlp.initialize(get_examples)
 | |
|     sgd = nlp.create_optimizer()
 | |
|     assert len(spancat.labels) != 0
 | |
|     for i in range(40):
 | |
|         losses = {}
 | |
|         nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd)
 | |
|     doc = nlp("I like London and Berlin.")
 | |
|     assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
 | |
|     assert len(doc.spans[spancat.key]) == 2
 | |
|     assert doc.spans[spancat.key][0].text == "London"
 | |
|     scores = nlp.evaluate(get_examples())
 | |
|     assert f"spans_{SPAN_KEY}_f" in scores
 | |
|     assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
 | |
| 
 | |
| 
 | |
| def test_ngram_suggester(en_tokenizer):
 | |
|     # test different n-gram lengths
 | |
|     for size in [1, 2, 3]:
 | |
|         ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[size])
 | |
|         docs = [
 | |
|             en_tokenizer(text)
 | |
|             for text in [
 | |
|                 "a",
 | |
|                 "a b",
 | |
|                 "a b c",
 | |
|                 "a b c d",
 | |
|                 "a b c d e",
 | |
|                 "a " * 100,
 | |
|             ]
 | |
|         ]
 | |
|         ngrams = ngram_suggester(docs)
 | |
|         # span sizes are correct
 | |
|         for s in ngrams.data:
 | |
|             assert s[1] - s[0] == size
 | |
|         # spans are within docs
 | |
|         offset = 0
 | |
|         for i, doc in enumerate(docs):
 | |
|             spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
 | |
|             spans_set = set()
 | |
|             for span in spans:
 | |
|                 assert 0 <= span[0] < len(doc)
 | |
|                 assert 0 < span[1] <= len(doc)
 | |
|                 spans_set.add((span[0], span[1]))
 | |
|             # spans are unique
 | |
|             assert spans.shape[0] == len(spans_set)
 | |
|             offset += ngrams.lengths[i]
 | |
|         # the number of spans is correct
 | |
|         assert_equal(
 | |
|             ngrams.lengths,
 | |
|             [max(0, len(doc) - (size - 1)) for doc in docs]
 | |
|         )
 | |
| 
 | |
|     # test 1-3-gram suggestions
 | |
|     ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1, 2, 3])
 | |
|     docs = [
 | |
|         en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
 | |
|     ]
 | |
|     ngrams = ngram_suggester(docs)
 | |
|     assert_equal(ngrams.lengths, [1, 3, 6, 9, 12])
 | |
|     assert_equal(
 | |
|         ngrams.data,
 | |
|         [
 | |
|             # doc 0
 | |
|             [0, 1],
 | |
|             # doc 1
 | |
|             [0, 1],
 | |
|             [1, 2],
 | |
|             [0, 2],
 | |
|             # doc 2
 | |
|             [0, 1],
 | |
|             [1, 2],
 | |
|             [2, 3],
 | |
|             [0, 2],
 | |
|             [1, 3],
 | |
|             [0, 3],
 | |
|             # doc 3
 | |
|             [0, 1],
 | |
|             [1, 2],
 | |
|             [2, 3],
 | |
|             [3, 4],
 | |
|             [0, 2],
 | |
|             [1, 3],
 | |
|             [2, 4],
 | |
|             [0, 3],
 | |
|             [1, 4],
 | |
|             # doc 4
 | |
|             [0, 1],
 | |
|             [1, 2],
 | |
|             [2, 3],
 | |
|             [3, 4],
 | |
|             [4, 5],
 | |
|             [0, 2],
 | |
|             [1, 3],
 | |
|             [2, 4],
 | |
|             [3, 5],
 | |
|             [0, 3],
 | |
|             [1, 4],
 | |
|             [2, 5],
 | |
|         ],
 | |
|     )
 | |
| 
 | |
|     # test some empty docs
 | |
|     ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1])
 | |
|     docs = [en_tokenizer(text) for text in ["", "a", ""]]
 | |
|     ngrams = ngram_suggester(docs)
 | |
|     assert_equal(ngrams.lengths, [len(doc) for doc in docs])
 | |
| 
 | |
|     # test all empty docs
 | |
|     ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1])
 | |
|     docs = [en_tokenizer(text) for text in ["", "", ""]]
 | |
|     ngrams = ngram_suggester(docs)
 | |
|     assert_equal(ngrams.lengths, [len(doc) for doc in docs])
 |