mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			36 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			36 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pydantic import StrictInt
 | 
						|
from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops, with_array
 | 
						|
from thinc.api import LayerNorm, Maxout, Mish
 | 
						|
 | 
						|
from ...util import registry
 | 
						|
from .._precomputable_affine import PrecomputableAffine
 | 
						|
from ..tb_framework import TransitionModel
 | 
						|
 | 
						|
 | 
						|
@registry.architectures.register("spacy.TransitionBasedParser.v1")
 | 
						|
def build_tb_parser_model(
 | 
						|
    tok2vec: Model,
 | 
						|
    nr_feature_tokens: StrictInt,
 | 
						|
    hidden_width: StrictInt,
 | 
						|
    maxout_pieces: StrictInt,
 | 
						|
    use_upper=True,
 | 
						|
    nO=None,
 | 
						|
):
 | 
						|
    t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
 | 
						|
    tok2vec = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width),)
 | 
						|
    tok2vec.set_dim("nO", hidden_width)
 | 
						|
 | 
						|
    lower = PrecomputableAffine(
 | 
						|
        nO=hidden_width if use_upper else nO,
 | 
						|
        nF=nr_feature_tokens,
 | 
						|
        nI=tok2vec.get_dim("nO"),
 | 
						|
        nP=maxout_pieces,
 | 
						|
    )
 | 
						|
    if use_upper:
 | 
						|
        with use_ops("numpy"):
 | 
						|
            # Initialize weights at zero, as it's a classification layer.
 | 
						|
            upper = Linear(nO=nO, init_W=zero_init)
 | 
						|
    else:
 | 
						|
        upper = None
 | 
						|
    return TransitionModel(tok2vec, lower, upper)
 |