mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			230 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy
 | 
						|
import zlib
 | 
						|
import srsly
 | 
						|
from thinc.api import NumpyOps
 | 
						|
 | 
						|
from ..compat import copy_reg
 | 
						|
from ..tokens import Doc
 | 
						|
from ..attrs import SPACY, ORTH, intify_attr
 | 
						|
from ..errors import Errors
 | 
						|
 | 
						|
# fmt: off
 | 
						|
ALL_ATTRS = ("ORTH", "TAG", "HEAD", "DEP", "ENT_IOB", "ENT_TYPE", "ENT_KB_ID", "LEMMA", "MORPH", "POS")
 | 
						|
# fmt: on
 | 
						|
 | 
						|
 | 
						|
class DocBin:
 | 
						|
    """Pack Doc objects for binary serialization.
 | 
						|
 | 
						|
    The DocBin class lets you efficiently serialize the information from a
 | 
						|
    collection of Doc objects. You can control which information is serialized
 | 
						|
    by passing a list of attribute IDs, and optionally also specify whether the
 | 
						|
    user data is serialized. The DocBin is faster and produces smaller data
 | 
						|
    sizes than pickle, and allows you to deserialize without executing arbitrary
 | 
						|
    Python code.
 | 
						|
 | 
						|
    The serialization format is gzipped msgpack, where the msgpack object has
 | 
						|
    the following structure:
 | 
						|
 | 
						|
    {
 | 
						|
        "attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
 | 
						|
        "tokens": bytes, # Serialized numpy uint64 array with the token data
 | 
						|
        "spaces": bytes, # Serialized numpy boolean array with spaces data
 | 
						|
        "lengths": bytes, # Serialized numpy int32 array with the doc lengths
 | 
						|
        "strings": List[unicode] # List of unique strings in the token data
 | 
						|
        "version": str, # DocBin version number
 | 
						|
    }
 | 
						|
 | 
						|
    Strings for the words, tags, labels etc are represented by 64-bit hashes in
 | 
						|
    the token data, and every string that occurs at least once is passed via the
 | 
						|
    strings object. This means the storage is more efficient if you pack more
 | 
						|
    documents together, because you have less duplication in the strings.
 | 
						|
 | 
						|
    A notable downside to this format is that you can't easily extract just one
 | 
						|
    document from the DocBin.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, attrs=ALL_ATTRS, store_user_data=False, docs=[]):
 | 
						|
        """Create a DocBin object to hold serialized annotations.
 | 
						|
 | 
						|
        attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
 | 
						|
            always serialized, so they're not required. Defaults to None.
 | 
						|
        store_user_data (bool): Whether to include the `Doc.user_data`.
 | 
						|
        RETURNS (DocBin): The newly constructed object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#init
 | 
						|
        """
 | 
						|
        attrs = sorted([intify_attr(attr) for attr in attrs])
 | 
						|
        self.version = "0.1"
 | 
						|
        self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
 | 
						|
        self.attrs.insert(0, ORTH)  # Ensure ORTH is always attrs[0]
 | 
						|
        self.tokens = []
 | 
						|
        self.spaces = []
 | 
						|
        self.cats = []
 | 
						|
        self.user_data = []
 | 
						|
        self.flags = []
 | 
						|
        self.strings = set()
 | 
						|
        self.store_user_data = store_user_data
 | 
						|
        for doc in docs:
 | 
						|
            self.add(doc)
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        """RETURNS: The number of Doc objects added to the DocBin."""
 | 
						|
        return len(self.tokens)
 | 
						|
 | 
						|
    def add(self, doc):
 | 
						|
        """Add a Doc's annotations to the DocBin for serialization.
 | 
						|
 | 
						|
        doc (Doc): The Doc object to add.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#add
 | 
						|
        """
 | 
						|
        array = doc.to_array(self.attrs)
 | 
						|
        if len(array.shape) == 1:
 | 
						|
            array = array.reshape((array.shape[0], 1))
 | 
						|
        self.tokens.append(array)
 | 
						|
        spaces = doc.to_array(SPACY)
 | 
						|
        assert array.shape[0] == spaces.shape[0]  # this should never happen
 | 
						|
        spaces = spaces.reshape((spaces.shape[0], 1))
 | 
						|
        self.spaces.append(numpy.asarray(spaces, dtype=bool))
 | 
						|
        self.flags.append({"has_unknown_spaces": doc.has_unknown_spaces})
 | 
						|
        for token in doc:
 | 
						|
            self.strings.add(token.text)
 | 
						|
            self.strings.add(token.tag_)
 | 
						|
            self.strings.add(token.lemma_)
 | 
						|
            self.strings.add(token.morph_)
 | 
						|
            self.strings.add(token.dep_)
 | 
						|
            self.strings.add(token.ent_type_)
 | 
						|
            self.strings.add(token.ent_kb_id_)
 | 
						|
        self.cats.append(doc.cats)
 | 
						|
        if self.store_user_data:
 | 
						|
            self.user_data.append(srsly.msgpack_dumps(doc.user_data))
 | 
						|
 | 
						|
    def get_docs(self, vocab):
 | 
						|
        """Recover Doc objects from the annotations, using the given vocab.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocab.
 | 
						|
        YIELDS (Doc): The Doc objects.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#get_docs
 | 
						|
        """
 | 
						|
        for string in self.strings:
 | 
						|
            vocab[string]
 | 
						|
        orth_col = self.attrs.index(ORTH)
 | 
						|
        for i in range(len(self.tokens)):
 | 
						|
            flags = self.flags[i]
 | 
						|
            tokens = self.tokens[i]
 | 
						|
            spaces = self.spaces[i]
 | 
						|
            if flags.get("has_unknown_spaces"):
 | 
						|
                spaces = None
 | 
						|
            doc = Doc(vocab, words=tokens[:, orth_col], spaces=spaces)
 | 
						|
            doc = doc.from_array(self.attrs, tokens)
 | 
						|
            doc.cats = self.cats[i]
 | 
						|
            if self.store_user_data:
 | 
						|
                user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
 | 
						|
                doc.user_data.update(user_data)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    def merge(self, other):
 | 
						|
        """Extend the annotations of this DocBin with the annotations from
 | 
						|
        another. Will raise an error if the pre-defined attrs of the two
 | 
						|
        DocBins don't match.
 | 
						|
 | 
						|
        other (DocBin): The DocBin to merge into the current bin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#merge
 | 
						|
        """
 | 
						|
        if self.attrs != other.attrs:
 | 
						|
            raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
 | 
						|
        self.tokens.extend(other.tokens)
 | 
						|
        self.spaces.extend(other.spaces)
 | 
						|
        self.strings.update(other.strings)
 | 
						|
        self.cats.extend(other.cats)
 | 
						|
        self.flags.extend(other.flags)
 | 
						|
        if self.store_user_data:
 | 
						|
            self.user_data.extend(other.user_data)
 | 
						|
 | 
						|
    def to_bytes(self):
 | 
						|
        """Serialize the DocBin's annotations to a bytestring.
 | 
						|
 | 
						|
        RETURNS (bytes): The serialized DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#to_bytes
 | 
						|
        """
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        lengths = [len(tokens) for tokens in self.tokens]
 | 
						|
        tokens = numpy.vstack(self.tokens) if self.tokens else numpy.asarray([])
 | 
						|
        spaces = numpy.vstack(self.spaces) if self.spaces else numpy.asarray([])
 | 
						|
 | 
						|
        msg = {
 | 
						|
            "version": self.version,
 | 
						|
            "attrs": self.attrs,
 | 
						|
            "tokens": tokens.tobytes("C"),
 | 
						|
            "spaces": spaces.tobytes("C"),
 | 
						|
            "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
 | 
						|
            "strings": list(self.strings),
 | 
						|
            "cats": self.cats,
 | 
						|
            "flags": self.flags,
 | 
						|
        }
 | 
						|
        if self.store_user_data:
 | 
						|
            msg["user_data"] = self.user_data
 | 
						|
        return zlib.compress(srsly.msgpack_dumps(msg))
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data):
 | 
						|
        """Deserialize the DocBin's annotations from a bytestring.
 | 
						|
 | 
						|
        bytes_data (bytes): The data to load from.
 | 
						|
        RETURNS (DocBin): The loaded DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#from_bytes
 | 
						|
        """
 | 
						|
        msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
 | 
						|
        self.attrs = msg["attrs"]
 | 
						|
        self.strings = set(msg["strings"])
 | 
						|
        lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
 | 
						|
        flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
 | 
						|
        flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
 | 
						|
        shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
 | 
						|
        flat_tokens = flat_tokens.reshape(shape)
 | 
						|
        flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
 | 
						|
        self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
 | 
						|
        self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
 | 
						|
        self.cats = msg["cats"]
 | 
						|
        self.flags = msg.get("flags", [{} for _ in lengths])
 | 
						|
        if self.store_user_data and "user_data" in msg:
 | 
						|
            self.user_data = list(msg["user_data"])
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
def merge_bins(bins):
 | 
						|
    merged = None
 | 
						|
    for byte_string in bins:
 | 
						|
        if byte_string is not None:
 | 
						|
            doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
 | 
						|
            if merged is None:
 | 
						|
                merged = doc_bin
 | 
						|
            else:
 | 
						|
                merged.merge(doc_bin)
 | 
						|
    if merged is not None:
 | 
						|
        return merged.to_bytes()
 | 
						|
    else:
 | 
						|
        return b""
 | 
						|
 | 
						|
 | 
						|
def pickle_bin(doc_bin):
 | 
						|
    return (unpickle_bin, (doc_bin.to_bytes(),))
 | 
						|
 | 
						|
 | 
						|
def unpickle_bin(byte_string):
 | 
						|
    return DocBin().from_bytes(byte_string)
 | 
						|
 | 
						|
 | 
						|
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
 | 
						|
# Compatibility, as we had named it this previously.
 | 
						|
Binder = DocBin
 | 
						|
 | 
						|
__all__ = ["DocBin"]
 |